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Abstract

This thesis researched the ability to develop regression models

to predict the number of source lines of code (LOC) based on

functional descriptions of the software. LOC, a major cost driver

- in currently available software cost estimating models, has been

consistently underestimated, thus lowering not only the software cost

estimate but also the total cost estimate of the weapon system. Six

software sizing data bases containing various functional variables

were used. The variables included complexity, reliability, exper-

ience level of programmers, etc. For each data base, regression

analysis was performed to derive the optimal model to predict LOC.

Of the five data bases containing complexity, it was statistically

significant in three. The best developed model was for Armament

Division's airborne computer programs. The correlation coefficient

2
R was .6583 for the two variables in the model. These were: (1)

the system for which the program was developed and (2) the reliability

needed in the program. The initial research has been accomplished,

but more data and further research is needed.
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DEVELOPING SOFTWARE SIZE ESTIMATING RELATIONSHIPS

BASED ON FUNCTIONAL DESCRIPTIONS OF THE SOFTWARE

I. Introduction

This chapter provides an overview of the thesis. First, the

general issue of the thesis is described including why the issue dis-

cussed is a problem and why the problem is important. Second, the

scope of this thesis is described. Next, definitions of terms central

to the understanding of the thesis are explained. Finally, the

research questions which this thesis answers are listed.

General Issue

Air Force and other Department of Defense (DoD) weapon sys-

tems are rapidly increasing in complexity. This complexity, in turn,

is partially a function of the sophisticated computer programs needed

to run the state-of-the-art internal subsystems of these new weapon

systems.

New weapon systems are very costly. Almost daily, reports of

cost overruns on a new DoD weapon system can be read in the evening

paper. These reports usually state that DoD's cost estimates were

initially low, which is now causing the current cost overruns. The



DoD has recognized this problem. The 24 May 1984 Comptroller

General's Report to the Congress states:

DoD's cost estimates for weapon system programs are
of major concern when the Congress is deciding to allo-
cate billions of dollars to defense programs. The accu-
racy, completeness, and timeliness of DoD's cost
estimates need to be improved to give Congress more
reliable data for its decision process [ 13:i].

Since our new weapon systems rely on complex computer soft-

ware, these software costs make up a major portion of the overall

cost estimate for these weapon systems. The major cost driver for

most software cost estimating models currently available is the size

or the number of lines of code (LOC) for the software. However, the

size of the software has been consistently underestimated, thus

lowering the software cost estimate and, consequently, the overall

cost estimate for the weapon system. In a research report on software

sizing methods conducted for the DoD by the ARINC Research Corpor-

ation the authors state,

For several years the DoD has experienced problems in
estimating and controlling software costs, including those
for all phases of software development and life-cycle
support. Many examples exist where cost and schedule
overruns in software acquisitions have led to unexpected
cost growth for the overall system in which the software
is embedded [l:v].

An even more recent article on the problem of software sizing states,

Software size estimates almost always grow over the life-
cycle. The amount of underestimation varies depending
on many factors; but on the average, it is in the range of
70 to 100 percent from contract award to project com-
pletion. For this reason, it is imperative that greater

V



efforts are applied towards obtaining more accurate size
estimates earlier in the software life-cycle [14:17].

Still another report prepared for the DoD states,

The increasing contribution of software development and
maintenance costs to the overall life-cycle cost of DoD
weapon systems has been well documented in recent
years. In particular, software life-cycle costs are pre-
dicted to be in excess of 50 percent of the total system
costs by the end of the decade [12:1-1].

The significance of the software size estimating problem for the Air

Force is stated by the HQ Air Force Systems Command's (AFSC's)

Cost Method Improvement Group (CMIG) report:

The size of non-space-constrained software is regularly
underestimated in the early development phases. Yet
most software cost models are based on size as an
input variable. Low cost estimates result. Since soft-
ware is becoming a more and more significant part of
Full Scale Development (FSD) cost (and schedule),
unbiased software size estimating techniques must be
developed [6:65].

Problem Statement

Because of the recent Gramm-Rudman budget cuts currently

affecting acquisition programs, and because of possible future budget

cuts, it is imperative that our future cost estimates be as accurate as

possible. As discussed above, an accurate software size estimate is

a key factor in the overall cost estimate of a weapon system.

According to the ARINC Research Corporation, who investigated

techniques on software size estimations, there are four najor soft-

ware sizing models: measurement technique, quantitative functional

3
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relationships, qualitative functional relationships, and PERT sizing.

Their subjective analysis concluded that the best method is measure-

ment technique, which

assumes that software size can be reliably estimated
through rapid software prototyping in which critical
functions of a complex software development are initially
developed to demonstrate feasible performance [ 1:2-5].

Their analysis also states that measurement techniques are the most

difficult to develop and are very limited in their gene ralizability, but

do give moderate to high accuracy potential (1:2-6). Quantitative

functional relationships are the second best method because they can

provide an accuracy potential up to a moderate level, whereas PERT

sizing and qualitative relationships can only provide a low level

accuracy (1:2-5, 2-6). As pointed out above, quantitative techniques

are what the CMIG report says the Air Force should use to estimate

software size. Unfortunately, the ARINC report also states that at

the present time no reliable quantitative functional relationship for

software sizing is available (1:2-5). Therefore, the specific objective

of this research study is to develop an equation, or a set of equations,

based on multiple regression analysis that relates software size (the

dependent variable) to functional characteristics of the software (the

independent variables).

4



Scope

This thesis attempts to develop a regression model for esti-

mating software size (the number of source lines of code) based on

functional descriptions of the software for each of the four data bases

used. The software size estimate generated from each of the success-

ful models can then be used in a cost estimating relationship that uses

software size as an input. The estimating equations developed are

based only on multiple regression analysis and use several of the

many possible significant functional descriptions of software that

could be related to size. Because of the limited number of software

sizing data bases available and the content of some of the data bases

that were obtained, only four data bases are used.

Definitions

The following definitions are critical to an understanding of this

research study:

Computer Software Configuration Item (CSCI). "Hardware or soft-

ware, or an aggregation of both, which is designed by the contracting

agency for configuration management" (4:8).

Size Estimating Relationship (SER).

A size estimating relationship assumes that software
size can be reliably estimated through the development
and use of empirical equations that relate size to cer-
tain functional characteristics of the software. It is
necessary to develop or obtain those equations that
have characteristics similar to the software function

" 5
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under evaluation. The equations are developed by
statistical analysis of empirical data from actual
software programs [1:2-5].

Multiple Regression. "Multiple regression analysis is a statistical

tool that utilizes the relation between two or more quantitative vari-

ables so that one variable can be predicted from the others" (7:23).

Computer Program. "A series of instructions or statements in a form

acceptable to an electronic computer designed to cause the computer

to execute an operation or a series of operations" (12:B-39).

Computer Software. "A combination of associated programs and com-

puter program data definitions required to enable the computer hard-

ware to perform computational or control functions" (12:B-39).

Size Driver. Analagous to a cost driver as an independent variable

except that it is a description of the computer software that may be

statistically related to size.

Software Sizing Data Base. "A collection of data points consisting of

software size versus software functions collected at the subsystem

and component level which are suitably correlated" (9:3).

Research Questions

The primary research questions addressed in this study are:

1. What are several of the significant "size drivers" for each

of the software sizing data bases used?

2. Given these size drivers, can a multiple regression rrodel

be developed to predict software size for each data base?

6
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The research subquestion is: How "generalizable" are the math-

ematical equations developed? In other words, can one or more of

them be applied to other software sizing data bases with the original

size drivers still being statistically significant to predict software

size using this new data base?

Research Development

The development of the research proposed in this paper will

follow the general chapter descriptions as outlined below.

As described in this section of the proposal, chapter one is the

introduction to the research problem. It covers the general issue of

the topic of software sizing, the problem statement, the scope of the

research, definitions to help explain important terms that will be

essential in understanding the research, and the research question

to be investigated.

Chapter two contains the literature review on software sizing.

The literature reveals the various viewpoints held in the area.

Chapter three of the thesis explains the specific methodology

to be used in the research.

Chapter four of the thesis contains the results of the data

analysis and the statistical testing. The results of the regression is

analyzed with respect to the methodology described in chapter three.

7



Chapter five of the thesis discusses the conclusions drawn from

the research. It also describes any ideas and needs for further

research that may be generated in this study.

8



II. Background

Chapter Overview

This chapter contains a review of the literature concerning the

software sizing concept as it applies to the DoD cost analyst. First,

to see where the software sizing estimate fits into the overall soft-

ware cost estimate, a short explanation of current software trends

and the software cost estimating process will be covered. Second,

the software sizing concept will be explained in more detail. Third,

an explanation of a software sizing data base and how it relates to

software size estimation will be discussed. Lastly, a few of the

commercial software size estimating models available will be

described. The literature review concludes with the author's com-

ments on the literature.

Software Trends

"In 1981 the annual cost of software in the United States was

forty billion dollars or two percent of Gross National Product (GNP)"

(10:2). If this current growth trend continues, software costs will

become a much greater percentage of GNP in the future. Boehm had

estimated that by 1985 almost 40% of the American labor force would

be using computers in their jobs (Z:19). Within the total growth area

of computer costs, an ever-increasing percent of the total costs

9



will be made up of software costs (2:18). For DoD the rapidly rising

costs of software has hit the critical level.

For several years, the DoD has experienced problems
in estimating and controlling software costs, including
those for all phases of software development and life-
cycle support. Many examples exist where cost and
schedule overruns in software acquisitions have led to
unexpected cost growth for the overall system in which
the software is embedded [ 1:v].

Another report states that for the DoD, "Software life-cycle costs are

predicted to be in excess of 80% of total computer hardware/software

system life-cycle and in excess of 50% of the total system costs by

the end of the decade" (12:1-1).

To understand how important software size estimation is, it is

necessary to understand the overall software cost estimating process.

Software Cost Estimating

In his book, Software Engineering Economics, Barry W. Boehrn

describes the importance of software cost estimating.

The reason for this strong emphasis on software cost
estimation is that it provides the vital link between the
general concepts and techniques of economic analysis
and the particular world of software engineering.
There is no good way to perform a software cost/
benefit analysis without some reasonably accurate
method of estimating software costs, and their sensi-
tivity to various product, project, and environmental
factors. Software cost estimation techniques are also
important because they provide an essential part of the
foundation for good software management [2:301.

Software cost estimating, therefore, is the key link between

10



developing software and determining whether it is economical. How-

ever, there are major problems in software cost estimating that must

be kept in mind by the cost analyst. In an Air Force Institute of

Technology (AFIT) report on software costing, the authors; Steig,

Stewe, and Ward; summarize six key problems in software costing.

(See Barry Boehm's book for further details; bibliography reference

number two.)

First, source instructions are not uniform from project
to project, nor do they capture the essence of the desired
product. Second, software engineering requires creativity
and the cooperation of human beings whose individual and
group behavior is hard to predict. Often the user does not
know what is available and does not know the organization's
idiosyncrasies that he must know if he is to design a product
compatible with the organization. Third, the software
engineering process has a much smaller base of relevent
quantitative historical experience from which to draw than
do other developmental/enginee ring efforts. Additionally,
it is extremely difficult and costly to add to this base by
performing controlled experiments. Fourth, the outputs
of software engineering efforts are so diverse that it is
nearly impossible to rely on comparative techniques to
extrapolate meaningful cost factors. Fifth, software
engineers are often over-optimistic and tend to forget
previous experiences which adversely affected other
similar software development efforts. Lastly, in the
middle of a software development effort it is often extremely
difficult to determine how the total program completion rate
compares with the total program expenditure rate [1:6-7].

Because of these factors, the cost analyst will constantly be

faced with a challenge to accurately estimate the costs of software.

The software development process involves a highly integrated

set of requirements and resources to produce a software program.

There are many cost drivers that affect the outcome of this

1i
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development process. According to a report by The Analytic Sciences

Corporation, there are ten major categories of cost drivers affecting

the costs of the software development process:

1. Functional requirements
2. Development methods
3. Programming language
4. Development environment
5. Personnel quality
6. Hardware constraints
7. Documentation
8. Operational environment
9. Schedule requirements

10. Code size [ 12:2- 1].

The authors of the previously cited AFIT report have also com-

piled a list of cost drivers from different sources and have separated

them into different attributes with the major determinants of cost

under each attribute:

Size:
1. The number of 'preplanned' lines of code.
2. The complexity of the system.

P rog ram:
1. The amount of projected software maintenance.
2. The performance and reliability specifications.
3. Whether or not data dictionaries are used.

Compute r:
1. Whether or not the software has to make up for

hardware deficiencies.
2. Whether the software is designed before or after

the hardware.
3. The amount of memory space available to the

enginee r.

Personnel:
1. Whether or not the same expert personnel remrain

on the job from start to finish.
2. Whether or not personnel on the project have

12
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experience on similar projects.
3. Often adding personnel to help a late job catch

up only makes it later.

Project:
1. The amount of up front detailed design.
2. How much requirements change.
3. I-low familiar the user personnel are with the

capabilities of the system being developed [10-13- 14].

Knowing all these possible problems in software cost estimating

and the many possible cost drivers, the cost analyst must then

develop a cost model to estimate the cost of the software.

Software Size--The Key Variable

Even after having developed a software cost model, there are

still problems the analyst must be aware of. Boehm states it very

well.

Having a good software cost model available does not

guarantee good software cost estimates. As with other
computer-based models, a software cost estimation
model is a 'garbage in-garbage out' device: if you put
poor sizing and attribute-rating data in on one side,
you will receive poor cost estimates out the other side
[2:308].

In recent years, the DoD has found out just how true this statement is.

As summarized in a report from the Resource Cost Analysis Office
p

of The Aerospace Corporation, the need for Air Force and other DoD

program managers to have complete and accurate information about

future software costs for the new state-of-the-art weapon systems has

become increasingly critical. This is particularly important in soft-

ware cost estimating. Since both cost and schedule estimates are

13



usually based on the size of the new weapon system, software size is

a key parameter (11:i). As stated in the introduction of this proposal,

HQ AFSC's CMIG report emphasized that the size of the software pro-

gram for the new weapon systems is regularly underestimated, and

because most software models rely on size as an input variable into

the model, low cost estimates result (6:65).

wBoehm also emphasizes the importance of the software size

variable. "The software undersizing problem is our most critical

road block to accurate software cost estimation" (2:320). He also

lists the three main causes of underestimating software size.

1. People are basically optimistic and desire to
please. Everybody would like the software to be small
and easy. High estimates lead to confrontation situations,
which people generally prefer to avoid.

2. People tend to have incomplete recall of previous
experience. In terms of the distribution of source code
by function, for example, people tend to have a strong
recollection of the primary application software functions
to be developed--the 2 to 3 percent of the product de-
voted to model calculations--and a much weaker
recollection of the large amount of user-interface and
housekeeping software that must also be developed.

3. People are generally not familiar with the entire
software job. This factor tends to interact with the
incomplete-recall factor to produce underestimates of
the more obscure software products to be developed.
A major example is a strong tendency to underestimate
the size of support software [2:320-321].

In still another report, The Analytic Sciences Corporation stated

that even though alternatives to the use of lines of code have been pro-

posed over the years, it is fairly certain that lines of code will remain

the standard for software cost estimation models. Many of these

14
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alternatives are highly correlated to the lines of code parameter, such

as, number of modules (12:2-4). The report concludes, "In general,

for software cost estimation, lines of code is the most promising vari-

able when used in combination with qualitative information" (12:2-4).

From the literature surveyed, software size seems to be con-

sidered the key parameter in the software cost estimation process.

Software Data Bases

In order to use most types of software size estimating models,

the analyst must have historical data to input into the model to come

up with an estimate of the number of lines of code for the new system.

The data for a particular project, in this case software sizing, is

collected, analyzed, sorted, and placed into a data base. This '"data"

is then inputted into a storage/retrieval system, usually of a com-

puter system. This is the "base" or supporting foundation of all infor-

mation requests.

According to a software data base report conducted by The

Analytic Sciences Corporation, at the present time software data bases

have been developed into two categories: those that contain summary

data at the system level and those that contain detail data at the lowest

level to which software can be logically divided (12:2-2). Unfortun-

ately, the amount of detail is determined not by the requirements of

the user, but by the availability of the data (12:2-2). The most

detailed data bases exist within the development organization which

15



have a direct influence on the type of data collected for the day-to-day

management of a development effort (12:2-2). Therefore, government

software development organizations, such as the NASA Software

Engineering Laboratory, and defense contractors historically have the

best data available (12:2-2). Unfortunately, data availability at govern-

ment program officies is limited by the existing data items used for

reporting software technical and resource utilization data (12:2-2).

Generally, software data bases are divided into six distinct

categories:

1. System description and characteristics
2. Development schedule data
3. Hardware characteristics and constraints
4. Development resources and constraints
5. Software size and characteristics
6. Resource expenditure data

The data within each of these categories consist of
the elements required to classify the system, to define
the development environment, and to derive the soft-
ware development cost drivers and input parameters
for software cost and sizing models [12:2-6].

For this research, the most important of these six categories is

the software size and characteristic category. The type of software

size data included in the data base is driven by two requirements.

First, is the need for size data at the computer program
configuration item (CPCI) level with allocations to various
functional characteristics, processing modes, and languages
to support the specific requirements of several cost and
sizing models. Second, the need for size decomposition to
the lowest level available with functional categorization
and language identification to support sizing by analogy
requirements [12:2- 10].
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Because of the recent emphasis on software sizing models to

produce a reliable estimate on the number of lines of code, software

sizing data bases have been developed. However, because of the cost,

time, and effort needed to develop a software sizing data base, there

are only a limited number of them within DoD. One of the newest (5

June 1985) sizing data bases has been developed by the Space SystemE

Cost Analysis Group, Software Subgroup, of The Aerospace Corpora-

tion. They used two surveys to collect data needed to develop the data

base. In their report attached to the sizing data base they state:

The purpose of both surveys was to build a software sizing
data base for use in predicting software module size (lines
of code) for new software development. The parameter
'lines of code' is critical to the accurate estimating of
software development effort using available cost estimating
models. A specific goal of the survey effort and subsequent
analysis was to statistically correlate software module
size with software module function. The current data base
has been successfully used by Space Division and by the
Aerospace Corporation as a guide ('look up table') for
estimating software size as related to function [9:2].

A second extensive software sizing data base has been developed

by the Armament Division (AD). It consists of programs written for

missile, range, and munition systems. Each of the programs are

described by various functional characteristics: the number of source

lines of code, the number of development months, the programming

language, the degree of system specification, the reliability require-

ment needed in the program, and the relative complexity of the

func tion.
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A third comprehensive software sizing data base has been con-

structed by the Electronic Systems Division (ESD). This data base

consists of varying electronic software programs. Each program is

also described by various functional characteristics similar to the

AD data base.

A fourth software sizing data base has been developed by the

Simulator System Program Office at the Aeronautical Systems

Division (ASD). This data base also describes each program by

different functional characteristics. However, in this data base, the

number of lines of code are in machine language.

Finally, the Ballistic Missile Office (BMO) has developed a

software sizing data base. Again, each program is described by

several different functional characteristics. In this data base, the

number of lines of code are in source lines of code.

Software Sizing Models

Given that a software sizing data base is available and the

appropriate inputs for the model being used are known, then the

analyst can develop an estimate of the number of lines of code.

Because the purpose of this research is to develop a new elementary

software sizing model, it is appropriate now to describe some of the

software sizing models currently in use.

18



According to a technical report on software sizing and cost

estimation conducted by the ARINC Research Corporation, there are

four general software sizing methods used by the DoD and software

development companies. The four general methods are (1) Program

Evaluation and Review Technique (PERT) sizing; (2) qualitative

functional relationships; (3) quantitative functional relationships; and

(4) measurement. Table I lists these methods together with the cor-

responding approaches and form of the estimating relationships

(1:2-2,2-3).

The four general methods are briefly discussed below.

PERT sizing allows the analyst to estimate software size on the

basis of experience and engineering judgment. PERT sizing makes

the assumption that software development experts can provide reliable

size estimates for new developments by using the knowledge they and

others have gained from similar software development projects.

However, the quality of the estimate is dependent on the expert's

capabilities in remembering the knowledge gained from other efforts

and engineering judgment. Therefore, PERT sizing is a common

technique for using experience and judgment in estimating software

size. PERT sizing is a formal approach used by analyst to estimate

the most likely sizes for any given software function, as well as upper

and lower limits. The mathematical equation for PERT sizing is

SIZE a + 4m + b, (1)
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and the associated standard deviation (a) is approximately,

a=b - a /6 (2)

whe re:

a = smallest number of lines of code
m = most likely number of lines of code
b = largest number of lines of code

PERT sizing should be used in the early phases of a program when

little detail about the software is known (1:2-3,2-4).

The second method for estimating software size, qualitative

functional relationship, is based on performing a comparison or

analogy to a similar system.

Qualitative functional relationships assume that

software size for a new weapon system can be estimated
by analogy, where identified functional requirements of
the new system are compared in a qualitative manner
with those of existing systems [1:2-4].

Two approaches for the size estimate based on analogy can be used:

top-down or bottom-up. In general, the top-down approach involves

system-level estimates based on existing systems with similar appli-

cations. The bottom-up approach entails function-level estimates

based on similarity of software functions. The estimated size of each

function determined by analogy are then summed to produce a total

system size estimate (1:2-4).

Regardless of which approach is used, the accuracy of the
software size estimate depends on the quality of data
available, the extent of the data analysis, and the validity
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of the analogies. Normally, as systems become more
complex, the probability that inaccurate comparisons
will be made increases and, accordingly, one's level of
confidence in the estimate decreases [1:2-5].

According to the same report, there are presently no reliable

quantitative functional relationships for software sizing. Nonetheless,

those quantitative methods under research assume that software size

can be reliably estimated through the development of empirical equa-

tions, such as regression equations, that relate size to different

functional characteristics of the software. It is necessary, therefore,

to develop equations that have characteristics similar to the software

function under evaluation. These equations are developed by statisti-

cal analysis of data from actual software programs (1:2-5). These

data points compose the software sizing data bases discussed earlier.

The last method is the measurement technique.

This technique assumes that software size can be reliably
estimated through rapid software prototyping in which
critical functions of a complex software development are
initially developed to demonstrate feasible performance.
Although the prototype software is not the final product,
size measurements at the function level provide fairly
refined data that can be extrapolated into software size
estimates for the final product with a high level of con-

M fidence [1:2-5].

Table II summarizes the four sizing methods discussed above.

The entries in the table are the subjective opinions of the authors of

the ARINC Research Corporation report where the table comes from.

In order to pick the best method, it is necessary to consider the study

objectives, what is currently known about the weapon system being
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considered, and the number of assumptions that can be made and still

be able to produce a useful estimate (1:2-6).

Proceeding from these four general categories of software sizing

models to more specific sizing models, the Air Force's Space Division

and The Aerospace Corporation have developed a "look up table" from

the previously mentioned software sizing data base. This "look up

table" or guide is used for estimating software size as related to

function (9:2). The report under bibliography reference number nine

describes the effort in more detail. This is a first step in developing

more sophisticated sizing models within DoD.

Private companies have also researched and developed software

sizing models, but on a more sophisticated level. These have been

developed so the model can be sold f-r use by those needing software

size estimates. The DoD currently uses some of these commercial

sizing models in their military format. Two of the more well known

models are discussed next.

1. PRICE Systems Division of RCA, Cherry Hrills, New Jersey,

has developed one of the most recent and state-of-the-art software

sizing models to date. Known as the PRICE SZ for PRICE SIZER,

. . . the PRICE SZ module is a conversational parameter
model designed to estimate software program instruction
size for commercial or military applications, using RCArs
empirical modeling techniques. The PRICE SZ model
uses a state-of-the-art approach, . . . using a mix of
software design requirements, technical approaches,
growth requirements, functional input/outputs, and
historical software size behavior [8: 1- 1].
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The size estimates produced from the SZ model can then be used as an

input into software cost models. According to the reference manual,

SIZER can be used early in the design planning process when only the

functions and application of the software are available (8:1-1).

2. A different approach to the sizing problem has been taken by

GJB Associates, Software Engineering and Analytical Services of

Redwood City, California. They have developed a sizing model called

the Software Sizing Model (SSM). They state,

It has been established, conclusively, that qualitative
sizing information available at the proposal stage is
significantly more accurate than the corresponding
quantitative data. Therefore, the use of qualitative
(relative) input is the fundamental principle of SSM
[5:1].

This qualitative data determines the relative sizes of the software

modules (5:1). "When the modules are ranked in relative magnitude,

the actual sizes of only two modules (the lowest and highest possible

module sizes) are needed to extrapolate the remaining module sizes"

(5:1). The SSM model also interfaces with any software cost model.

Comments and Conclusions From Literature Review

Because of very likely and significant budget cuts faced by DoD

caused by the Gramm-Rudman resolution, it will be even more

critical that DoD and especially the American taxpayer get more

"bang for the buck" for future weapon systems. Since these new wea-

pon systems are becoming more dependent on computer software to
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control the myriad of different functions built into these systems,

software costs will become an even bigger portion of the total costs

of these weapon systems. Of all the software cost drivers, it is soft-

ware size or the number of lines of code that has been singled out as

being the most important. This point has been emphasized throughout

this literature review.

However, it has only been in the last couple of years that DoD

has started to develop software sizing data bases in order to develop

software sizing models. As can be seen from this review there are

only a few sizing models available and, according to one report, there

are no significant quantitative models based on empirical equations

that can be used by a program office cost analyst. Therefore, the

main problem is to develop a general, statistically accurate sizing

model, using regression equations. Finally, the model should be

developed using existing software sizing data bases (although limited)

which are based on the functional description of the software.

26



III. Methodology

Chapter Overview

The methods used to conduct this research will be discussed in

this chapter. The initial work consisted of personal interviews,

phone interviews, and a review of the literature that helped determine

the availability of software sizing data bases and, in general, the

current state-of-the-art of software sizing models. Secondly, the

size drivers were determined for each sizing data base used.

Finally, multiple regression analysis was used to develop analysis of

variance (ANOVA) tables and other regression statistics to determine

the significant size drivers and the resulting regression equations.

Data Collection

The personal interviews and phone interviews resulted in four

major software sizing data bases being acquired for the research.

(As will be noted later, two more data bases were formed from these

four major data bases.) The four sizing data bases are all different

in terms of number of data points and functional description of the

software.

The smallest data base was from HQ Air Force Systems Com-

mand and consisted of seven data points for ballistic missile software

programs. These programs are all used on missile systems
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developed at the Ballistic Missile Office (BMO). Each program in the

data base had been broken into eight different functional descriptions.

They were: the number of source lines of code (LOC), the environ-

ment (either ground support programs or airborne programs), the

computer language used, the number of interfaces between the pro-

gram and the user or other programs, the number of inputs needed

by the program, the number of outputs generated by the program,

the experience of the programmers in months, and the number of

months it took to develop the program.

The second data base was from the Electronic Systems Division

(ESD). This data base consisted of 26 data points of various

electronic software programs. Each of the programs were described

by eight different functional descriptions. They were: the LOC, the

environment (either ground or airborne), development hours in man-

hours, the computer language used, the reliability requirement

needed in the program (low to high), a rating of low to extra high

representing the relative complexity of the function, the experience

of the programmers in months, and the quality of the specification or,

in other words, the degree of system definition (low to high).

A third software sizing data base was from the Armament

Division (AD). This data base contained 25 useable data points. Each

program was described by seven functional descriptions. They were:

the LOC, the type of system the program supported (missile, range,
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or munition), the development months, the programming language

used, the degree of system specification (low to high), the reliability

requirement needed in the program (low to high), and the relative

complexity of the function (low to high).

The fourth data base was a combination of the first three major

data bases described above and another data base obtained from

Space Division (SD). Because the SD data base contained only two

logically possible size drivers (complexity of the function and the

programming language) that could relate to the number of LOC, it

was decided to combine all four data bases in order to separate each

program by language and then use this "new" data base to develop a

model.

As will be described in the next section, the methodology used

on each data base was the same. Regression models estimating the

number of LOC were developed from six distinct data bases. These

data bases were: ballistic missile support programs, general

electronic system programs, armament system programs which were

subdivided into ground support programs and airborne support pro-

grams, and last, programs subdivided into the two most prevalent

programming languages found in the four maj-r data bases, Fortran

and Assembly.

As can be inferred from the description of the four major sizing

data bases above, the assembly of the sizing data bases themselves by
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the various organizations determined what possible size drivers

would be tested for each data base. Therefore, the first research

question of what are some of the possible significant size drivers for

each data base was answered.

At this point, it should be noted that the "size" of the software

or number of LOC was estimated in source code. All the LOC in

each of the data bases used were in source code. This decision was

based on the opinion of Wheaton in her article:

The use of machine language instructions (MLI) for
estimating the size of software is not recommended,
because it is best to consider lines of code as units
of effort which comprise the total software develop-
ment effort. This is not possible with MLI as they
are a function of the language and compiler efficiency,
and not directly related to effort. Using MLI does not
provide a consistent basis for measuring effort, since
the same source program may generate different
numbers of object instructions depending on the
compiler [ 13: 17].

Finally, the nonquantitative variables were quantified. The

variables of complexity, reliability, and quality of specification were

rated as shown in Table III. These ratings were already assigned for

the above three variables for each data base by the organization which

assembled the data bases. It has therefore been assumed that the

software personnel in each of these organizations were knowledgeable

about their own data and have assigned the correct rating to each vari-

able. Unfortunately, no references were stated as to why each vari-

able was given its particular rating. The harder-to-quantify variable
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of programming language was quantified by assigning numerical

values to each different language used in the four data bases, per

the method used by the ARINC Research Corporation (see 1:4-16).

The assignment of values are shown in Table III. The environment

that the software operated in was quantified as shown in Table III.

Finally, for the AD data base, the function of the system the software

operated in was quantified as depicted in Table III.

Statistical Testing and Multiple Regression

As stated in chapter one, the second primary research question

asks, can a multiple regression model be developed, using the pre-

viously defined size drivers, to accurately predict software size for

each data base? In order to answer this question, multiple regres-

sion was used to identify the significant size drivers and develop a

model to predict the LOC for each data base. The regression analysis

was done using the Statistical Analysis System (SAS) package. For

each data base the following general steps and analysis techniques

were used to develop a regression model or at least identify any

significant size driver(s).

The first step was the identification of possible size drivers.

Only those variables that were included in the data bases and seemed

plausible to influence the number of LOC were included in the initial

model.

32



The second step was to run the SAS regression program for

each data base using all the independent variables for that data base

and then conducting a systematic analysis from that point. The SAS

program provided the ANOVA table and other statistics to help

evaluate the model that was being tested.

For a review of the regression statistics used in this research,

the reader should consult Appendix A. For a more detailed explana-

tion of the ANOVA table and multiple regression the reader should

consult reference 7 . In addition to the many regression statistics

used in developing the regression models for each data base, prob-

lems of multicollinearity, outlying observations and their possible

influence on the model and model specification had to be considered.

Again, the reader should consult Appendix A for an explanation of

each of these conditions.

Analysis of Results

This section describes the specific steps that were used to build

and evaluate each software sizing model for the six data bases

described earlier in this chapter. They were:

1. Because multicollinearity is usually present in nonexperi-

mental data and can have significant effects on the other regression

statistics, all the regression statistics associated with rnulticolline-

arity were checked first.
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2. Because most of the data bases are small, outliers with

respect to X and Y, or both, were looked for next. If any outliers

were found, their influence was measured by examining Cook's D and

the associated F-distribution (see Appendix A).

2 2
3. The R , adjusted R , and the standard error of the estimate

values were examined. These variables are important because the R2

value measures the amount of variation in Y (=LOC) which is explained

by the independent variables in the model. The adjusted R2 value

measures this same variation, but takes into account the number of

independent variables in the model. Lastly, the standard error of the

estimate is a measure of the reliability of the estimate.

4. An F test and a partial F test, when necessary, were con-

ducted next. The F test is used because it tests whether there is a

regression relation between the dependent variable Y and the set of X

variables. A partial F test is used to test the indepei. 'rariables

for regression relationships when multicollinearity is present.

5. If the above four steps looked promising, then the model

specification was evaluated.

6. If the model specification seemed reasonable based on a

priori logic, then the regression model was evaluated further. Con-

fidence interval estimations were made for each of the populatioi,

parameters. Finally, the prediction limits with a 1 -a confiden, e
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coefficient for a new observation was calculated. The analysis in

the next chapter employed the previously described methodology.

Formulation of Conclusions and Recommendations

The conclusions of this thesis were based on the analysis of

the multiple regression results and an intense study of the literature.

The recommendations come from the recognition that there is much

more to be done in the area of software size estimation. They

constitute suggestions for further research which could not be

accomplished within the time and scope of this thesis effort.
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IV. Analysis of Results

Chap ter Overview

This chapter contains the step-by-step results of building a

software sizing model for each of the six data bases. Each model is

analyzed separately following the methodology discussed in the pre-

vious chapter. The statistical results are presented in summary

form in the chapter. Also, each of the data bases are described in

the same order as in chapter three. Finally, all the data bases are

listed in Appendix B.

Developing the Software Sizing Models

The software sizing model development for each data base

begins with running all of the variables for each data base in a single

model. Because each variable included in each data base seems like

a logical software size driver, the first model run and analyzed for

a data base contains all of the functional variables. This is done in

order to establish a starting point to evaluate each variable in the

model to determine whether or not it should be deleted or not. Based

on these results, different combinations of the variables were then

run and analyzed according to the established methodology described

in chapter three. If possible, further models were then developed
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based on these results. This process continued until no further

statistically significant model could be developed.

Th...e BMO Data Base. As described in chapter three, the BMO

data base contains the variables of environment (ENV), language

(LANG), number of interfaces (INTF), number of inputs (INPT),

number of outputs (OUTPT), experience level (EXP), and develop-

ment months (DM). It includes only seven data points.

When the first regression model was run with all the variables,

a singular matrix was formed and the variables EXP and DM are

found to be a linear combination of each other. However, in order to

have inverse matrix, a matrix cannot have any columns that are linear

combinations of each other; they all must be independent. "The rank

of a matrix is defined to be the maximum number of linearly independ-

ent columns in a matrix" (7:200). Therefore, a matrix with rank less

than this maximum, such as the one formed by this regression, is

said to be singular, and does not have an inverse. If a matrix does

not have an inverse, then regression analysis cannot be performed.

Consequently, two separate models were run; one containing EXP/

ENV/LANG/INTF/INPT/OUTPT and the other DM/ENV/LANG/INTF/

INPT/OUTPT. Unfortunately, both of these models produced singu-

lar matrices. In the model containing EXP, it was found that EXP

was a linear combination of all the other variables. In the model

containing DM, it was found that OUTPT was a linear combination of
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all the other variables. As stated before, further analysis cannot be

performed on these models. Next, a model excluding the variables

EXP and DM was run. Table IV describes the summary statistics for

these models. This table and the remaining tables in the chapter

give the statistics that are needed to evaluate the model that the table

corresponds. For example, Table IV lists only those statistics that

are necessary to show that the model containing the variables of ENV,

LANG, INTF, INPT and OUTPT for the BMO data base had severe

multicollinearity and was therefore not useful. As can be seen in

Table IV, the severe multicollinearity is first shown by the variance

inflation factors for each variable. "A maximum variance inflation

factor in excess of 10 is often taken as an indication that multicollin-

earity may be unduly influencing the least squares estimates" (7:39Z).

The second statistic that is used to measure multicollinearity is the

tolerance factor. Because the tolerance factor is the inverse of the

variance inflation factor, a tolerance factor less than . 1 therefore

indicates that multicollinearity is probably present. The tolerance

factors for each variable in the model clearly show that multicollin-

earity exists. The regression statistic "F value" in Table IV is

calculated from the regression model. This "calculated" F value is

compared with the F "table" value for the particular model. This is

called the F test. This comparison tests whether there is a regres-

sion relation between the depe'-dent variable Y and the set of X
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TABLE IV

Results of Regression Model for
ENV/LANG/INTF/INPT/OUTPT

F VALUE: N/A

R SQUARE: 1.000

VARIANCE INFLATION: TOLERANCE:
ENV: 132.29 ENV: .00756
LANG: 39.23 LANG: .02549
INTF: 77.74 INTF: .01286
INPT: 2079.72 INPT: .00048
OUTPT: 2933.50 OUTPT: .00034

independent variables. In this model, the regression program did not

report the F value because the severe multicollinearity made its value
meaningless. The R2 value is listed next in Table IV. The R2 value

measures the proportion of variance in the dependent variable

explained or accounted for by the independent variable(s). In other

words, it is the degree of association between the dependent variable

and the independent variable(s). However, because of multicollin-

earity in this model, there were no unique sum of squares which had

any effect in reducing the total variation in dependent variable (LOC).

Therefore, because the correlation coefficient (R- ) depends on the

sum of squares, it could not be calculated properly and the SAS

program reported a value of one. Lastly, because of the
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multicollinearity in this model, the t statistics for each variable were

not reported. The t calculated values (tcalc) are the statistics calcu-

lated from the regression model. They are compared with the

model's associated t distribution to see which variables are statistic-

ally significant in the model. This is called the t test. The

statistically significant variables are then used to build better

regression models. Consequently, because this model could not

report t values, various other combinations of the variables for the

BMO data lease were run. It was found that the variables ENV and

INTF always had the largest tcalc values. As a result, the model

containing ENV and INTF (ENY/INTF) was analyzed further. (The

summary statistics are shown in Table V.) Multicollinearity is not a

problem since the variance inflation factors are well below 10 and

the tolerance factors are above . 1. However, when outliers with

respect to Y were checked, it was found that the absolute values of

the studentized deleted residuals for observations four and five (see

the BMO data base in Appendix B) in the ENV/INTF model are higher

than the associated t distribution. Outliers with respect to (w.r.t.)

. . .X and/or Y often involve large residuals and often have dramatic

effects on the fitted least squares regression function. Consequently,

the outlying observations must be examined and a decision reached on

whether they should be retained or eliminated. Outliers w.r.t. X

are identified by their leverage values being greater than two times
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TABLE V

Results of Regression Model for ENV/INTF

F VALUE: .555 Ftable (.95; 2,4) = 6.94

RSQUARE: .2172

ROOT MSE: 40352.61

tcalc :  ttable (.975; 5) = 2.571

ENV: -. 953
INTF: -. 520

VARIANCE INFLATION: TOLERANCE:
ENV: 1.006 ENV: .9942
INTF: 1.006 INTF: .9942

OUTLIERS w.r.t. Y: STUDENTIZED DELETED
t DISTRIBUTION RESIDUAL (SDR):

t(.95;3) = 2.353 OBS #4: 5.3820
OBS #5: -2.4546

INFLUENTIAL OUTLIERS:
F DISTRIBUTION

F(3;4) = .941 (50th Percentile)

COOK'S D:
OBS #4: .642 (35th Percentile)
OBS #5: .872 (46th Percentile)

the number of parameters (p) in the model divided by the number of

observations (n) used in the model. Outliers w. r.t. Y are identified

by comparing the absolute value of the observation's studentized

deleted residual (the deleted residual divided by its standard

41



deviation) with the appropriate two-tailed t distribution for the model.

If the studentized deleted residual is greater than the value of the t

distribution, then the observation is an outlier with respect to Y.' To

determine if the outlier was influential on the fitting of the regression

function, the regression statistic Cook's distance measure D (Cook's

D) is used. This measure shows in the aggregate the differences

between the fitted values for each observation when all n observations

are used in the data base and the fitted values when the ith observation

is deleted. The Cook's D for each outlier is then compared to the

model's appropriate F distribution. The rule of thumb states that if

the Cook's D value is less than the 20th percentile of the associated F

distribution, then the outlier is not influential. If the Cook's D is

greater than the 50th percentile level, then the outlier is influential.

Table V shows that the Cook's Ds for observations four and five, by

interpolation, are not above the 50th percentile level. They fall in

the questionable region (between the Z0th and 50th percentiles).

Therefore, because the data base is small to begin with and they are

not above the 50th percentile level, they were kept in the data base.

Even though there was no multicollinearity or influential outliers,

the R was only .2172. More importantly, both the F test (Fcalc =

.555 < Ftable  6.94) and the t test on the independent variables fail

(tcalc table< = 2.571 arid tcalc = .21 table =2.571).

The F test failure means that there was not significant relationship
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between the dependent variable LOC and the independent variables

ENV and INTF. The failure of the t test on each independent variable

means that neither variable was statistically significant in helping to

predict LOC.

Finally, each of the seven independent variables were run

separately to determine if there was a relationship between the inde-

pendent variable and LOC. (The results are in Table VI.) As can be

seen none of the variables were statistically significant; all models

and variables failed their F tests and t tests respectively. Only the

R2 for the variable ENV was noteworthy.

In summary, no statistically significant model able to predict

LOC for the BMO data base could be developed. However, it must be

kept in mind that this was a very small data base; only seven data

points. The best model found had a correlation coefficient (R ) value

of .2172 and contained the variables of ENV (the environment the soft-

ware will operate in) and INTF (the number of interfaces in the pro-

gram). If the BMO data base can be enlarged, the chances are good

that the variables ENV and INTF can be proven to be statistically

significant. This larger data base could also cause the other inde-

pendent variables to become significant.

The ESD Data Base. The ESD data base contains seven

functional variables in addition to the number of LOC for each of 26

data points. The variables are: environment (ENV), development
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TABLE VI

Results of Individual Regression Models for
ENV, LANG, INTF, INPT, OUTPT, EXP, and DM

ENV: LANG:
*FVALUJE: .871 F VALUJE: .145
*RSQUARE: .1789 R SQUARE: .0351
tc alc -. 933 tc alc: .381

INTF: INPT:
F VALUE: .261 F VALUE: .006
*RSQUARE: .0613 R SQUARE: .0016
tcalc: -. 511 tcalc: -. 080

OUTPT: EXP:
F VALUE: .000 F VALUE: .148
RSQUARE: .0001 R SQUJARE: .0356
tcalc: -. 021 tc alc: -. 384

DM:
F VALUE: . 167

2~ RSQUARE: .0401
tc alc: -. 409

F table (.95;1,5) = 6.61

ttable (.975;5) = 2.57 1

hours in manhours (DI-RS), language (LANG), reliability (REL), corn-

plexity (COMPX), experience level of programmers (EXP), and the

quality of the specification (QSPEC).

As before, a regression model containing all the independent
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variables was run first to establish a starting point. (The results

are summarized in Table VII.) First, multicollinearity was not a

problem because the variance inflation factors were below 10 and the

tolerance factors above .1. Second, outliers w. r.t. X and Y were

looked for. There were no outliers w.r.t. X, but there were three

observations as outliers w.r.t. Y. However, none of these outliers

were influential. (See Table VII.) Even though these two conditions

were not problems the F test for the model fails (Fcalc = .608 <

Ftable = 2.58) and the R2 value (. 1912) is poor. Finally, all of the

independent variables fail their individual t tests at the (1-(X/2 =) .975

level of confidence.

As before, various combinations of the independent variables

were run. These results, in turn, lead to further models. It was

found that the variables QSPEC and EXP consistently had the largest

tcalc values. Therefore, a model containing OSPEC and EXP was

analyzed.

Because of the fairly large data base and the need to test any

significant model on a known observation in order to test the model's

prediction capability, a data point was randomly deleted from the

ESD data base (observation #6). Therefore, using the remaining 25

data points the OSPEC/ENV regression model was run. (The results

are summarized in Table VIII.) First, there was no multicollinearity

because the variance inflation factors are less than 10 and the
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TABLE VII

Results of Regression Model for ENV/DHRS/
LANG/REL/COMPX /EXP/QSPEC

F VALUE: .608 VARIANCE INFLATION:
ENV: 1.497

R SQUARE: . 1912 DHRS: 1.406
LANG: 1.209

ADJ RSQUARE: -. 1233 REL: 1.572
COMPX: 1.452

ROOT MSE: 17033.26 EXP: 1.373
QSPEC: 1.308

Ftable (.95;7, 18) = 2.58 TOLERANCE:
ENV: .668

ttable (.975;24) = 2.064 DHRS: .711
LANG: .827
REL: .636

tcalc: COMPX: .689

ENV: - .568 EXP: .728
DHRS: .487 QSPEC: .765
LANG: .249
REL: -1.126
COMPX: 1.286
EXP: - .725
QSPEC: 1.041

OUTLIERS w.r.t. Y: STUDENTIZTD DELETED
OBS #: RESIDUAL (SDR):

3 2.3486
5 2.8730
6 2.8278

t DISTRIBUTION (.95; 17) 1.740

INFLUENTIAL OBSERVATIONS: COOK'S D:
F (8; 16) = 2.564 OBS #3: .097

OBS #5: 1.633
OBS #6: 1.088
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TABLE VIII

Results of Regression Model for QSPEC/EXP

QSPEC/EXP: VARIANCE INFLATION:
F VALUE: 6.163 QSPEC: 1.227
R SQUARE: .3591 EXP: 1.227
ADJ R SQUARE: .3008
ROOT MSE: 12948.24

TOLERANCE:
QSPEC: .815

Ftable (.95; 2,22) = 3.445 EXP: .815

tc alc: ttable (.975; 23) = 2.069

QSPEC: 3.391
EXP: -2.281

LEVERAGE VALUES:
OBS #1 = .3998

OUTLIERS w.r.t. X: OBS #2 = .3532
2p/n = .24 OBS #5 = .4557

OBS #6 = .3842

OUTLIERS w.r.t Y: SDR:
t DISTRIBUTION: OBS #3 = 2.4061

t (.95; 21) = 1.721 OBS #5 = 1.7426
OBS #17 = 2,3841

INFLUENTIAL OUTLIERS:
F DISTRIBUTION:

F (3,22) = .814 (50th Percentile)

COOK'S D VALUES:
OBS # I = .362
OBS # 2 = .306

OBS # 3 = .211
OBS # 5 = .776
OBS # 6 = .012
OBS #17 = .071

MODEL: LOC = -16977.4 + 28268.83 QSPEC - 393.079 EXP
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tolerance factors greater than 1. Second, outliers w.r.t. X and Y

are also identified in Table VTTI. As can be seen none of the outliers

were influential. Third, since Fcalc = 6.163 was greater than

Ftable = 3.445 at the 95 percent level of confidence, there is a

regression relationship between the two independent variables

(QSPEC and EXP) and the dependent variable (LOC). Also, note that

the individual t tests on QSPEC and EXP proved significant at the

(l-a/2 =) .975 level of confidence, thus indicating linear associations

between the independent variables (QSPEC and EXP) and the dependent

variable (LOC). Fourth, the model has a correlation coefficient (R 2

of only .3591 which means it explains or accounts for a little more

than a third of the variation in the data. The next important statistic

is the standard error of the estimate (ROOT MSE in Table VIII.) The

standard error of the estimate is quite high (12948.24 lines of code)

indicating poor prediction capabilities for the model. The last major

criteria to be examined was the model specification. Unfortunately,

the model specification seems to be only half correct. A priori logic

would suggest that the sign of QSPEC should be negative. That is, by

defining what the program should do in some detail before program-

ming actually begins, the programmers should have a better idea of

what to include in the program. Therefore, the total number of lines

of code should be reduced. (Unfortunately, the ESD data base num-

bers for QSPEC do not support this logic; more data is needed to
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prove the a priori logic one way or another.) This, however, is not

what the regression produced. The regression coefficient for QSPEC

is +28268.83. The a priori logic for EXP would also suggest a

negative relationship. If the programmers have a lot of experience,

this should help reduce LOC because they should be able to write

more efficient programs. This is the case for EXP in the model.

(Again, as with OSPEC, there is not enough variation in the data for

EXP to support this logic. There are too many other variables

influencing LOC and not enough data in this data base to graphically

illustrate the a priori logic.) The regression model produced is

LOC = -16977.4 + 28268.83 QSPEC - 393.079 EXP.

Because the model is statistically significant based on the F

test and t test, even though the correlation coefficient is low and the

model specification possibly wrong, confidence interval estimations

were made for the two population parameters 8 1 (QSPEC) and $2

(EXP). (See Appendix A for the formula.) (Table IX shows the calcu-

lations.) As can be seen, there is a very wide range for both values

due to the large standard errors for each variable. Finally, a pre-

diction using the model developed was made using the QSPEC and

EXP data from the previously deleted data point (observation #6 in

the ESD data base). For this data point QSPEC = 1 and EXP = 54

months. The prediction is:

LOC = -16977.4 + 28268.83(1) - 393.079(54) = -9934.836 (3)

49

V'." "%"% %" '.' ,"'" '%'5, '% 'J '." ' '" " "' "" '" " " " 
" *' "' =" "."." " '-'' ." ." " " •" ' 

L-O



TABLE IX

Confidence Interval Estimations for the QSPEC/EXP Model

1 (QSPEC):

=.05 n = 25 p = 3

28269 + t(.975; 22) (8337)
28269 2 2.074 (8337)
28269 + 17291
10978 - 45560

82 (EXP):

=.05 n = 25 p = 3

-393 _+ t(.975, 22) (172)
-393 + 2.074 (172)
-393 t 357
(-750) - (-36)

The predicted value for LOC is negative and therefore makes no

sense. The actual value is 47525 lines of code. This is because the

R 2 value is low, the estimated regression coefficients can vary over

an extremely wide range, and the model specification is most likely

w rong.

In summary, the independent variables QSPEC and EXP

together in a model have been shown to be statistically significant.

However, the model has a low correlation coefficient (R 2 = .3591),

high standard errors, and probably the wrong model specification.
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Further testing of this model with a larger data base may correct the

model specification, lower the standard errors, and raise the R2

value.

The AD Data Base--Ground Systems. As previously described,

the AD data base was divided into ground programs and airborne

programs. This section will describe the analysis of the ground pro-

grams. This data base contains 12 data points with one data point

already randomly deleted for use in predictions. The ground program

AD data base contains six functional variables in addition to the num-

ber of LOC. They are: development months (DM), language (LANG),

quality of specification (QSPEC), reliability (REL), function or the

type of system (missile, range, or munition) the program functions

in.

Again, a regression model containing all the independent vari-

ables was run first. (The results are summarized in Table X.)

Because DM data was only available for eight of the twelve data

points, the SAS regression program only used these eight data points

any time DM was included in a model. As can be seen, the multi-

collinearity statistics do not indicate multicollinearity. However,

the outliers w. r.t. Y are very influential as noted by the Cook's D

values; all are well over the 50th percentile level for the associated

F distribution. (See Table X.) As explained earlier, this means

that the regression function was greatly distorted and resulted in the
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TABLE X

Results of Regression Model for DM/LANG/
QSPEC/REL/FUNC/COMPX

F VALUE: 5.426 VARIANCE INFLATION:
DM: 4.495

R SQUARE: .970Z LANG: 1.523
QSPEC: 5.884

ADJ R SQUARE: .7914 REL: 4.388
FUNC: 3.932

ROOT MSE: 12131.24 COMPX: 2.658

Ftable (.95; 6, 1) = 234 TOLERANCE:
DM: .222
LANG: .657

ttable (.975; 6) = 2.447 QSPEC: .170
REL: .228
FUNC: .254

tcalculated: COMPX: .376

DM: .303

LANG: -. 859

QSPEC: .267
REL: -. 762
FUNC: -1.769
COMPX: 3.046

F DISTRIBUTION FOR COOK'S D
F(7, 1) = .506 (50th Percentile)

COOK'S D:
OBS #1: 2.615 OBS #6: 2.540
OBS #2: 3.131 OBS #7: 3570.328
OBS #5: 2.540 OBS #8: 2.694

52



high R2 value. Even though the R2 value is at the 97 percent level,

the model fails the F test (Fcalc = 5.426 < Ftable = 234) indicating no

regression relationship. Lastly, each of the six independent vari-

ables were evaluated using the t test. COMPX proved significant at

the (1-M/Z =) .975 level of confidence (tcalc = 3.046 > ttable = 2.447).

Because COMPX proved statistically significant in the first

model, various other combinations of the independent variables were

tested with COMPX. Unfortunately, no statistically significant

models were found.

Lastly, individual models for each of the six independent vari-

ables were run. (The results are in Table XI.) Note, that observa-

tion one for the AD--Ground data base (see Appendix B) was an

influential outlier w. r.t. Y for the COMPX and DM models. However,

it was decided to leave it in the data base because of the small size

of the data base (only 12 data points) and because the data point is

correct and simply represents an unlikely event which could very

well occur again (7:409). As can be seen, two of the variables are

statistically significant. COMPX is significant at the 95 percent

level of confidence for the F test. The t test on COMPX is significant

at the (-./2 =) .975 level of confidence. DM is significant at the 90

percent level for the F test and for the t test. DM is significant at

the (l-a/2 =) .95 level of confidence.

As noted before, all combinations of the independent variables

53

I 1F , k , I "* I %,. %. N.



TABLE XI

Results of Regression Models for DM, LANG,
QSPEC, REL, FUNC, and COMPX

DM: LANG:
F VALUE: 4.361 F VALUE: .247
R SQUARE: .4209 R SQUARE: .0241
tc alc Z.088 tcalc: -.497

QSPEC: REL:
F VALUE: .252 F VALUE: .269
R SQUARE: .0246 R SQUARE: .0262
tcalc: -.502 tcalc: -.519

.4
FUNC: COMPX:*i VALUE: 1.49Z F VALUE: 3.166

SRSQUARE: .1298 R SQUARE: .2602
tcalc: -1.221 tcalc: 1.779

FOR LANG, QSPEC, REL, FUNC, COMPX:

Ftable (.95; 1, 10) = 4.96

Ftable (.90; 1, 10) = 3.29

ttable (.975; 10) = 2.228

ttable (.95; 10) = 1.812

FOR DM:

Ftable (.90; 1,6) = 3.78

ttable (.95, 5) = 2.015
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were tried. Because COMPX and DM proved significant individually,

the model containing both COMPX and DM was tested again. (The

results are in Table XII.) For the reasons stated earlier in this

section, the influential Y outlier (observation #1) was left in the data

base. The results indicate that neither the model nor the independent

variables are statistically significant. The model fails the F test at

both the 95 and 90 percent levels of confidence. The variables fail

the t test at both (1-m /2 = .975 and 1-m/2 = .95) levels of confidence.

In summary, no combination of the six independent variables

proved statistically significant. When the six independent variables

were tested individually, COMPX and DM proved statistically signifi-

cant at the 95 percent and 90 percent levels of confidence respectively.

It should be noted, however, that in both cases an influential, but

never-the-less correct, observation was left in the data base.

Finally, it may be possible with a larger data base, especially with

more data for the variable DM, that a statistically significant model

containing COMPX and DM and possibly some other variable could

* be developed.

The AD Data Base--Airborne Systems. This portion of the AD

data base contains the programs written for the airborne systems.

The data base contains 13 data points with one data point already

randomly deleted for use in prediction tests of any suitable model

developed. The airborne program AD data base contains six
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TABLE XII

Results of Regression Model for COMPX/DM

F VALUE: 3.496 VARIANCE INFLATION:
COMPX: 1.584

R SQUARE: .5831 DM: 1.584

ADJ R SQUARE: .4163
TOLERANCE:

tcalc : COMPX: .631
DM: .631

COMPX: 
.3913

DM: .ZZ19

ROOT MSE: 20292.87 Ftable (.95; 2,5) = 5.79

Ftabl e (. 90; 2,5) = 3.78

OUTLIERS w.r.t. X:
2p/n = .5 ttable (.975; 6) = 2.447

LEVERAGE VALUES: ttabl e (.95; 6) = 1.943

OBS #1 = .586
OBS #2 = .690 OUTLIERS w.r.t. Y:

t DISTRIBUTION:

INFLUENTIAL OUTLIERS: t(.95; 8) = 1.860

F DISTRIBUTION:

F(3,9) = .852 SDR:
OBS #1 = 4.609

COOK'S D VALUES:
OBS #1 = 1.981

OBS #2 = .008

functional variables in addition to the number of LOC. They are:

development months (DM), language (LANG), quality of specification
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(QSPEC), reliability (REL), the function (FUNC) the program will

support (missile, range, or munition), and complexity (COMPX).

First, a model containing all of the variables was run and

analyzed. (The results are summarized in Table XIII.) As before,

only a portion of the data base has DM data (nine out of thirteen).

Unfortunately, multicollinearity has inflated the R2 value. The two

independent variables DM and COMPX both have variance inflation

factors over 10 and tolerance factors below . 1. Also, REL is on the

border of contributing to the multicollinearity (variance inflation =

9.692 and tolerance = .103). The F test for the model fails at the

95 percent level but does pass at the 90 percent level. Finally, only

two of the six independent variables, DM and FUNC, are statistically

significant at the (l-a/Z =) .975 level of confidence.

As before, these results were used to test various combinations

of the variables, especially with DM and FUNC. After considerable

testing, a model with FUNC and REL seems good. (See Table XIV

for the results.) Two of the 13 original data points have been deleted

because of severe outlier problems--observations one and six (see the

AD--Airborne data base in Appendix B). First, there is no multi-

collinearity because the variance inflation factors are less than 10

and the tolerance values greater than . 1. Second, the model passes

the F test at the 95 percent level of confidence and the t tests on the

independent variables are significant at the (l-m/2 =) .975 level of
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TABLE XIII

Results of Regression Model for DM/LANG/
QSPEC/REL/FUNC/COMPX

* VALUE: 14.177 VARIANCE INFLATION:
DM: 10.952

SRSQUARE: .9770 LANG: 5.768
QSPEC: 3.546

ADJ R SQUARE: .9081 REL: 9.692
FUNC: 3.689
COMPX: 26.627

Ftable (.95; 6,2) = 19.13

Ftable (.90; 6,2) = 9.33 TOLERANCE:

DM: .091
LANG: .173

ttable (.975; 7) = 2.365 QSPEC: .282

REL: .103
FUNC: .271

calc: COMPX: .038
DM: 3.625
LANG: -1.632

QSPEC: .364
REL: 1.752
FUNC: -3.558
COMPX: -1.692

confidence. Next, the correlation coefficient (R z ) is a respectable

.6583. Fourth, the model specification also appears good. REL is

directly related to LOC; i.e., the more reliable the software program

must be the more the lines of code should increase. (See Figure 1.)

FUNC is inversely related to LOC; i.e., it seems reasonable that

programs written for a certain function should generally be about the
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TABLE XIV

Results of Regression Model for FUNC/REL

F VALUE: 7.707 Ftable(. 9 5 ; 2,8) = 4.46

R SQUARE: .6583 ttable(. 9 7 5 ; 9) = 2.262

ADJ R SQUARE: .5729
VARIANCE INFLATION:

t c alc: FUNC: 1.029
FUNC: -2.728 REL: 1.029

REL: 2.329

ROOT MSE: 6795.236 TOLERANCE:
FUNC: .972

STANDARD ERROR TERMS: REL: .972

FUNC: 3169.62
REL: 1829.981

MODEL: LOC = 9757.322 - 8647.28 FUNC +4262, 762 REL

CONFIDENCE INTERVAL ESTIMATIONS
OF0 1 (FUNC) AND 0 2 (REL):

=.05 n= 11 p = 3

FUNC: -8647 + t(.975; 8) (3170)
-8647 ; 2.306 (3170)
(-15957) - (-1337)

REL: 4263 t 2. 306 (1830)
43 - 8483

same length or fall within certain-ranges. Therefore, since the

function should always be known, the programmer will have a general

idea of how many lines of code the program might have and thus will

help lower the initial estimate of the number of lines of code.
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However, this small data base cannot show this relationship. Fifth,

the linearity of the model is shown by the randomness of the points

in the net scatter diagrams for the two independent variables. (See

Figure 2 and Figure 3.) Unfortunately, the standard error term for

the model (ROOT MSE = 6795 lines of code) is relatively high for

accurate predictions. Finally, in Table XIV, confidence level inter-

vals at the 95 percent level have been computed to show the ranges

for the true population parameters (0 1 = FUNC and 02 = REL.)

Another model with three variables is also good, but the extra

variable does not help in any way. This model is the same as the

previous one, but with QSPEC added. The results are in Table XV.

Because another independent variable is added, the R2 value is

slightly higher than in Table XIV; but the adjusted R 2 value is lower,

indicating QSPEC could not explain more of the variation in the data

to make up for the degrees of freedom lost by adding QSPEC. As can

be seen, multicollinearity is not a problem. Therefore, individual t

tests were used. Both FUNC and REL are significant at a = .05, but

QSPEC is not significant until m. .10. Furthermore, this is a good

example of why the adjusted R value should also be looked at when

new variables are added and deleted from a basic model. The conclu-

sion is that QSPEC adds no more explanatory power to the previous

model.

A fourth model containing FUNC/COMPX/REL was tested next.
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TABLE XV

Results of Regression Model for FUNC/REL/QSPEC

F VALUE: 5.708 Ftabl e (.95; 3,7) = 4.35

R SQUARE: .6816 Ftable (.90; 3,7) = 3.07

ADJ R SQUARE: .5622 ttable (.975; 9) = 2.262

tcalc: ttabl e (.95; ) = 1.833

FUNC: -2.728
REL: 2.329 VARIANCE INFLATION:
Q SPEC: -2.076 FUNC: 1.088

ROOT MSE: 6795.236 REL: 1.033

QSPEC: 1.056

STANDARD ERROR:
FUNC: 3169.62
REL: 1829.981 TOLERANCE:
QSPEC: 7302.308 FUNC: .919REL: .968

QSPEC: .945

MODEL: LOC = 40079.5 - 8647.28 FUNC + 4262.762 REL -
15161.1 QSPEC

The results are in Table XVI. The F test is significant at the 95 per-

cent level. Note again the lower adjusted R value compared to the

one in Table XIV. Also, in this model multicollinearity is somewhat

high to COMPX and REL. Because COMPX and REL have low tcalc

values, probably because of the multicollinearity, a partial F test was

conducted to test the hypothesis Ho:02 (COMPX) -. $3 (REL) = 0. (See

Appendix A for the equation.) The reduced model, therefore, only
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TABLE XVI

Results of Regression Model for FUNC/COMPX/REL

F VALUE: 5.310 Ftabl e (.95; 3,7) = 4.35

R SQUARE: .6947 ttabl e (.975; 9) = 2.262

ADJ R SQUARE: .5639
VARIANCE INFLATION:

tcalc: FUNC: 1.607

FUNC: -2.708 COMPX: 5.865

COMPX: - .914 REL: 4.822

REL: 1.875

ROOT MSE: 6866.438 TOLERANCE:
FUNC: .622

COMPX: .170

REL: .207

FULL MODEL (FUNC/COMPX/REL):
SS ERROR = 330035821
DEGREES OF FREEDOM (ERROR) = 7

REDUCED MODEL (FUNC):
SS ERROR = 619953846
DEGREES OF FREEDOM (ERROR) = 9

619953846 - 330035821

PARTIAL Fa 9-7 = 3.075330035821
7

Ftable (.95; (9-7),7) = (.95; 2,7) = 4.74

Ftable (.90; 2,7) = 3.26

contained FUNC. (See Table XVI.) Because partial Fc alc is less

than partial FtableI H0 is concluded. This means 02 = 03 = 0 and

together they are not significant and the reduced model should be
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used. In other words, the model containing FUNC/COMPX/REL is

really ins ignific ant.

Finally, the independent variables were tested in separate

models. (The results are summarized in Table XVII.) As can be

seen, the DM model passes the F test at the 95 percent level of confi-

dence and the independent variable DM passed the t test at the (1-Q/2

-) .975 level of confidence. Also note that FUNC and REL are both

significant at the 90 percent level of confidence.

It should be noted that many models with DM as a variable were

tested, because DM is the most significant variable by itself. How-

ever, in each case multicollinearity was present which distorted the

* regression statistics. However, if more data points for DM could be

*found, DM along with some of the other variables could prove to pro-

duce excellent models.

In summary, three of the six variables are significant by them-

selves--DM (95 percent level) and FUNC and REL (90 percent level).

The model with FUNC/REL proved to be good, but with high standard

errors. Two other models, both containing FUNC and REL and one

other variable, when evaluated, showed that the third variable was

not helpful in improving the prediction capability.

The Assembly Language Data Base. As described in chapter

three, this data base and the following data base contain programs

divided into the two languages found most prevalent in the four major
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TABLE XVII

Results of Regression Models for DM, LANG,
OSPEC, REL, FUNG, and COMPX

DM: LANG:
F VALUE: 12.628 F VALUE: .040
R SQUARE: .6434 R SQUARE: .0036
tcl:354tcalc: -. 200

QSPEC: REL:
F VALUE: .563 F VALUE: 4.786
R SQUARE: .0487 R SQUARE: .3032
tcalc: -71tcac 2.188

FUNC: COMPX:
F VALUE: 3.44 F VALUE: 2.284
*RSQUARE: .2383 R SQUARE: .1859
tc alc : -1.855 tc alc: 1.511

Ftable AND ttable FOR LANG, OSPEC, REL, AND FUNC:

Ftable (95; 1, 11) = 4.84

Ftable (90; 1, 11) = 3.24

ttable (.975; 11) = 2.201

ttable (-.95; 11) = 1. 796

Ftable AND t tbeFOR DM:

Ftable (.95; 1,7) = 5.59

ttable (. 975; 7) = 2. 365
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data bases used in this research--Assembly and Fortran. This

section describes the analysis on the Assembly data base. The

data base contains 30 data points. It is described by four functional

variables: quality of specification (QSPEC), reliability (REL),

environment (ENV), and complexity (COMPX). It should be noted

that only 15 of the data points contain all four variables, while all 30

data points contain the ENV and COMPX variables. (See Appendix B.)

As before, the first model contained all four independent vari-

ables for the Assembly data base. Unfortunately, as with the BMO

data base, a singular matrix is formed when all four variables are

regressed against LOC. It is found that QSPEC is a linear combin-

ation of two times the intercept value because all the data for QSPEC

is rated nominal (a value of 2). As noted before, a singular matrix

is not full rank and does not have an inverse matrix. Therefore, all

the regression statistics are meaningless. Consequently, the

remaining three variables were regressed against LOC. (The results

are summarized in Table XVIII.) There is no multicollinearity and

no influential outliers. Unfortunately, the model fails the F test at

the 95 and 90 percent levels of confidence and all the variables fail

their individual t tests indicating no linear relationships at all. The

highest tcalc value is 1.427 for COMPX. Even this fails at the 90

percent level.

Next because QSPEC cannot be used in any model, as explained
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TABLE XVIII

Results of Regression Model for ENV/COMPX/REL

F VALUE: 1.566 F(.95; 3,11) = 3.59

R SQUARE: .2993 F(.90; 3, 11) = 2.67

ADJ R SQUARE: .1081
tcalc(.975; 13) = 2. 160

tc alc

ENV: -. 948 tcalc(. 9 5 ; 13) = 1.77 1

COMPX: 1.427
REL: -. 946 VARIANCE INFLATION:

ENV: 1.755

COMPX: 1.971
REL: 2.058

TOLERANCE:
ENV: .570
COMPX: .507

REL: .486

above, the remaining three models that could be run with two vari-

ables in each model were analyzed. (See Table XIX for the results.)

The only conclusion that can be drawn is that COMPX is the only

statistically significant variable.

In summary, the only significant variable for this data base is

COMPX. Also, in order to test the quality of specification (QSPEC),

more data points with different levels of the quality of specification

need to be acquired. Finally, the variables of ENV and REL prove to
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TABLE XIX

Results of Regression for Models ENV/COMPX,
REL/COMPX, and ENV/REL

ENV/COMPX:

F VALUE: 3.112 Ftable(. 9 5; 2,27) = 3.35

R SQUARE: .1874 Ftabl(. 9 0; 2,27) = 2.52

ADJ R SQUARE: .1272 ttable(. 9 7 5 ; 28) = 2.048

tc alc:

ENV: .175 VARIANCE INFLATION:

COMPX: 2. 369 ENV: 1.168
COMPX: 1.168

ROOT MSE: 7968.37

STANDARD ERROR: TOLERANCE:

ENV: 4625.868 ENV: .856

COMPX: 1863.292 COMPX: .856

REL/COMPX:

F VALUE: 1.916 Ftable(. 9 5 ; 2, 12) = 3.89

R SQUARE: .2420 Ftable(. 9 o; 2, 12) = 2.81

ADJ R SQUARE: .1157 ttable(. 9 7 5; 13) = 2.160

t c alc: ttable(. 9 5 ; 13) 1.771

REL: -. 648
COMPX: 1.812

VARIANCE INFLATION:

ROOT MSE: 8821.518 REL: 1.786
COMPX: 1.786

TOLERANCE:
REL: .560
COMPX: .560
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TABLE XIX

Results of Regression for Models ENV/COMPX,
REL/COMPX, and ENV/REL (Continued)

ENV/REL:

F VALUE: 1.224 F table(.95; 2,12) = 3.89

R SQUARE: .1694 Ftable(. 9 0; 2, 12) = 2.81

ADJ RSQUARE: .0310 ttable(. 9 7 5 ; 13) = 2.160

tcalc: ttable(. 9 5 ; 13) = 1.771
ENV: -1.396

REL: - .289
VARIANCE INFLATION:

ROOT MSE: 9234.244 ENV: 1.590
REL: 1.590

TOLERANCE:

ENV: .629
REL: .629

be very ineffective by themselves, when in combination with each

other, or when in combination with COMPX.

The Fortran Language Data Base. This section describes the

analysis on the Fortran data base. The data base contains 55 data

points. It is described by the same four variables as the Assembly

data base: quality of specification (QSPEC), reliability (REL),

environment (ENV) (ground or airborne), and complexity (COMPX).

It should be noted that only 2 1 of the 55 data points contain all four

variables. All 55 data points contain ENV and COMPX data.
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As usual, the first model contained all four independent vari-

ables. (The results are summarized in Table XX.) First of all,

there is no multicollinearity because the variance inflation factors

for each variable is less than 10 and the tolerance factors for each

variable is greater than . 1. Secondly, there are no influential out-

liers. Unfortunately, the F test for the model fails at both the 95 and

90 percent levels of confidence which indicates no regression relation-

ship between the four independent variables and the dependent vari-

able LOC. However, the individual t tests indicate that COMPX (95

percent level) and ENV (90 percent level) are related to LOC.

Next, various combinations of the independent variables were

tested. As in the Assembly data base models, only the model con-

taining the independent variables COMPX and ENV proved to be

.7." statistically significant at the 95 percent level of confidence. (See

Table XXI for the results.) Also, as in the Assembly model of

COMPX/ENV, only COMPX is significant (95 percent Xvel) in the t

tests.

Finally, the four independent variables (QSPEC, REL, ENV,

and COMPX) were tested in individual models. (The results are

summarized in Table XXII.) As can be seen, the independent vari-

ables QSPEC, REL, and ENV all have extremely poor models. All

F tests and t tests fail at the 95 and 90 percent levels of confidence.

The first model for COMPX indicated that the second observation in
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TABLE XX

Results of Regression Model for QSPEC/REL/ENV/COMPX

F VALUE: 2.014 Ftable(. 9 5 ; 4,16) = 3.01

R SQUARE: .3348 F table(.90; 4,16) = 2.32

ADJ R SQUARE: . 1685
tcalc(.975; 19) = 2.093

tc alc:

QSPEC: .306 tcalc(. 9 5 ; 19) = 1.729

REL: -. 179
ENV: -1.879
COMPX: 2.359 VARIANCE INFLATION:

QSPE C: 1.0 14

ROOT MSE: 17829.68 REL: 1.589
ENV: 1.3Z8
COMPX: 1.407

TOLERANCE:
QSPEC: .986
REL: .6z9
ENV: .753
COMPX: .711

the data base (see Appendix B) produced an influential outlier w. r.t.

Y. Consequently, this data point was eliminated--mainly because

of the large data base and the model rerun. As can be seen in Table

XXII, COMPX has a very strong linear relationship (see net scatter

diagram in Figure 4) between itself and LOC. Both the F test and t

test are overwhelmingly superior at the 95 percent level of confi-

dence. The RZ value suggests that about 25 percent of the variation
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TABLE XXI

Results of Regression Model for ENV/COMPX

F VALUE: 9.655 Ftable(. 9 5 ; 2,51) = 3.18

R SQUARE: .2746 ttable(. 9 7 5 ; 52) = 2.01

ADJ RSQUARE: .2462 ttable(. 9 5 ; 52) = 1.675

tc alc:
ENV: -1.282 VARIANCE INFLATION:

COMPX: 4.218 ENV: 1.430
COMPX: 1.430

ROOT MSE: 9696.29

STANDARD ERRORS: TOLERANCE:

ENV: 4062.657 ENV: .699

COMPX: 1612.794 COMPX: .699

MODEL: LOC = -5970.29 - 5210.08 ENV + 6802.18 COMPX

in the data is explained by the complexity variable. Also, the model

specification agrees with the a priori logic, the sign for COMPX is

positive indicating that as the complexity of the function the program

runs increases, the number of lines of code are increased. (See

the plot in Figure 5 based on the Fortran data base.)

In summary, only the complexity variable (COMPX) is signifi-

cant as it was in the Assembly data base. However, when comparing

the models containing COMPX for the Assembly and Fortran data

bases, it can be seen that the regression statistics for COMPX in the

Fortran data base are significantly higher than in the Assembly data
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TABLE XXII

Results of Regression Models for QSPEC,
REL, ENV, and COMPX

QSPEC:
F VALUE: .073 Ftable(. 9 5 ; 1,19) = 3.52
R SQUARE: .0038
ADJ RSQUARE: -. 0486 ttable(. 9 7 5 ; 19) = 2.093
tcalc:

QSPEC: .270

REL:
F VALUE: .039 Ftable(. 95 ; 1,19) = 3.52
R SQUARE: .0020
ADJ RSQUARE: -. 0505 ttable(. 9 7 5 ; 19) = 2.093
tc alc:

REL: .197

ENV:
F VALUE: .252 Ftable(. 9 5 ; 1,52) = 4.03
R SQUARE: .0047
ADJ RSQUARE: -. 0140 ttable(. 9 7 5 ; 52) = 2.01
tc alc:

ENV: .502

COMPX:
F VALUE: 17.449 Ftable(. 9 5 ; 1,52) = 4.03
R SQUARE: .2512
ADJ R SQUARE: .2368 ttable(. 9 7 5 ; 52) = 2.01
tcalc:

COMPX: 4.177 STANDARD ERROR:
ROOT MSE: 9756.207 COMPX: 1356.814

MODEL: LOC = - 8657.43 + 5667.605 COMPX
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base. (See Table XXIII.) This suggests that either the complexity

of the function the program must run is more significant when Fortran

is used or that the larger number of data points in the Fortran data

base contributes to the difference. Lastly, in both the Fortran and

Assembly data bases the REL and ENV variables are insignificant.

However, QSPEC is insignificant in the Fortran data base and still

needs to be tested in the Assembly data base.

*7
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TABLE XXIII

Comparison of Results for the Assembly and Fortran
Models for ENV/COM]PX and COMPX

ASSEMBLY FORTRAN

COMPX: COMPX:
F VALUE: 6.416 F VALUE: 17.449
R SQUARE: .1864 R SQUARE: .25 12
tcalc: tc alc:

COMPX: 2.533 COMPX: 4.177
ROOT MSE: 7829.229 ROOT MSE: 9756.207
STANDARD ERROR: STANDARD ERROR:

COMPX: 1693.755 COMPX: 1356.814

COMPX/ENY: COMPX/ENY:
F VALUE: 3.112 F VALUE: 9.655
* SQUARE .1874 R SQUARE: .2746
tc alc: tc alc

COMPX: 2.369 COMPX: 4.218
ENV: . 175 ENV: - 1.282

ROOT MSE: 7968.37 ROOT MSE: 9696.29
STANDARD ERROR: STANDARD ERROR:

COMPX: 1863.292 COMPX: 1612.794
ENV: 4625.868 ENV: 4062.657
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V. Conclusions and Recommendations

Conclusions

This thesis has in part answered the two primary research

questions posed in chapter one. The first question asked--Given

several software sizing data bases, what are some of the possible

statistically significant software size drivers? In answering this

first question, the six different data bases used in this thesis all are

described by possible statistically significant size drivers. Each of

these data bases were described in detail in chapter three. However,

the analysis in chapter four actually revealed the statistically signifi-

cant size drivers for each data base. Chapter four also answered the

second primary research question--Given the possible software size

drivers for each data base, can a statistically significant multiple

regression model be developed to predict software size for each data

base? (See Table XXIV for a summary of the results of the regres-

sion analyses.)

For the BMO data base there were no statistically significant

variables or regression models. However, it should be kept in mind

that this data base contains only seven data points. The two most

"promising" independent variables were the number of interfaces the

program has (INTF) and what type of environment (ground or airborne)

the software will operate in.
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The results of the regression analysis on the ESD data base

revealed that both the quality of the specification (QSPEC) and the

experience of the programmers (EXP) proved statistically significant

when in combination in a regression model. The coefficient of

correlation (R 2 ) was .3591 which means the model explains slightly

over a third of the variation in the data when regressed against the

number of lines of code (LOC). Unfortunately, the high standard

error of the estimate for the model and the high standard error terms

for the two independent variables does not allow the model to be use-

ful for predicting LOC. Finally, none of the independent variables

prove statistically significant when analyzed in individual regression

models. However, the quality of specification (QSPEC) and the

experience level of the programmers (EXP) were the two highest in

terms R 2 values and . test results.

As described in chapter three, the AD data base was divided

into two subgroups--ground programs and ? rborne programs. This

was done in order to better separate the different types of software

programs. These two sets of programs are designed for three

different functions: missile, range, or munition. The results of

ground subgroup indicated that the relative complexity of the function

(COMPX) and the number of development months (DM) were both

statistically significant in individual regression models. However,

when combined into a single model, neither the model nor the two
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independent variables (COMPX and DM) proved statistically signifi-

cant. Also, other combinations of the variables revealed no

statistically significant regression models.

The regression analysis on the airborne subgroup of the AD

data base revealed that three of the independent variables were

statistically significant when run in individual models. These vari-

ables were development months (DM), the function the program is

designed for (FUNC), and the reliability required in the program

(REL). It was discovered, however, that when DM is used in com-

binations with the other independent variables, multicollinearity

always distorts the regression statistics. This may be due to the

small number of data points for DM. Even so, DM probably is not

a good cost driver of lines of code anyway. On the other hand, the

combination of FUNC and REL, produces a good regression model.

First, there is no multicollinearity or influential outliers. Second,

the coefficient of correlation (R 2) is about 66 percent. Next, the

model passes the F test at the 95 percent level of confidence and the

independent variables their t tests at the (1 - a/2 =) .975 level of

confidence. Finally, the model specification seems logical--function

inversely related to lines of code and reliability directly related to

lines of code. On the other hand, as shown in Table XIV, the stand-

ard error terms are too high for very accurate predictions of lines

of code.
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Lastly, as described in chapter three, the final two data bases

were a combination of the four major data bases used in this thesis.

These two data bases contained data split into the two most numerous

computer languages found in the four major data bases: Assembly

and Fortran. This grouping was done in order to see if programs

catagorized by the language they are written in is a way to develop

a good regression model to predict lines of code. Also, each of

these data bases contain only four functional variables in addition, of

course, to the number of lines of code. They are quality of specifi-

cation (QSPEC), the environment (ENV), reliability (REL), and com-

plexity (COMPX). The regression analysis on the Assembly data

base revealed that the only statistically significant independent

variable is complexity. No combination of the variables uncoveted

any useful modei to predict lines of code.

The Fortran data base analysis produced almost exactly the

same results as the Assembly data base analysis. Complexity is the

only statistically significant independent variable both in a model by

itself and when in combination with the other variables. However,

as Table XXIII in chapter four shows, the complexity variable models

for the Fortran data base are somewhat better than those for the

Assembly data base.

Overall, the regression analysis on the six data bases indicated

that complexity (COMPX), developnie-,i months (DM), reliability
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(REL), and function (FUNC) are the statistically significant independ-

ent variables when each of the variables were run in separate models.

Of these, complexity, is the most frequent. Five of the six data

bases contain the variable of complexity and in three of the five data

bases (60%) it is statistically significant. (See Table XXIV.) Also,

development months/hours is a variable in four of the six data bases

and was statistically significant in two of the four (50%) of those data

bases.

The b, st multivariate model was found for the airborne data

base for Armament Division. The independent variables of reliability

(REL) and function (FUNC) are in the model. The coefficient of cor-

relation is a respectable 66 percent. (See chapter four and Tables

XIV and XXIV.)

Unfortunately, the statistically significant regression models

found for each data base are not very useful for predicting the number

of lines of cole. This is mainly due to low R2 values which indicate

there are other variables related to lines of codes, but which are

not known. If these unknown variables could be included in the

models found in this research, then possibly the models will prove

to be better. Also, not enough data points for each data base could

cause low R2 values. Lastly, large standard error of the estimates

for the models and large standard error terms for the independent
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variables produce such wide ranges of values for the true progression

parameters, that prediction is impossible on a precise level.

Finally, the research subquestion--How generalizable are the

regression equations developed? -- was only partially answered. The

two computer language data bases were only a small attempt to

generalize a regression model. This was accomplished by combining

common valuables from the four major data bases and separating the

programs by the two most prevalent languages. Complexity was

found to be the only statistically significant variable for both data

bases. A model containing two variables (COMPX and ENV) was the

only statistically significant model found for each data base. How-

ever, they both have low R2 values. (See Table XXIV.)

Recommendations

The results of this thesis have generated a number of sug-

gestions and ideas for further research. They are presented below

in the order in which the author feels they should be accomplished,

although this may not be possible due to other constraints.

As a general recommendation, more data points and independent

variables should be added to each data base before any further

research is accomplished. These actions will make the statistical

results more substantial and meaningful.

Recommendation 1. The method used in this research to quanti-

fy qualitative type variables (for example, language) is very simple.
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The use of indicator variables is a much better way to quantify quali-

tative type variables. The reader should consult reference seven or

similar books on regression for more on the use of indicator vari-

ables. The results of using indicator variables may produce signifi-

cantly different conclusions. In the author's opinion, this recom-

mendation is just as important as the first.

Recommendation 2. Even though the net scatter diagrams and

model specifications probably imply that the data is linear, this

may not be the case. Therefore, using transformations on the data

such as squaring variables or using the log function may produce

better models. Of course, justification must be given for performing

any type of transformation.

Recommendation 3. Another approach to estimating the number

of lines of code may be to find regression equations for more specific

data bases. In other words, try to find a regression model to pre-

dict the number of lines of code for Air Force avionic systems or

even avionic systems for DoD in general. Looking at typical work

breakdown structures for aircraft, missile, or space systems should

provide other ideas.
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Appendix A: Regression Statistics Used

This appendix describes the ANCVA table and the other regres-

sion statistics used in this hesis. For a more detailed explanation

the reader should consult reference 7.

The Analysis of Variance Table

The ANOVA table shows the statistical relationships between the

dependent variable and the independent variable(s) in a regression

model (see Figure 6). "The analysis of variance approach is based on

the partitioning of sums of squares and degrees of freedom associated

with the response variable 'Y"' (7:84). In this thesis the response

variable is source lines of code (LOC).

There is variation in all statistical data. If all observations

(each data point) Yi are the same, Yi = Y (the mean of the data points

in each data base), and there would be no statistical problems (7:84).

The variation of the Y. is measured in terms of the deviation Y, - Y.

The measure of total variation, denoted by C TOTAL on the SAS

printouts, is the sum of the squared deviations:

C TCTAL =(Yi - 7)z (4)

"If C TOTAL = 0, all observations are the same. The greater is C

TOTAL, the greater is the variation among the Y. observations" (7:85).
8
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The smaller the C TOTAL, the less the variation in the data base;

therefore, a small C TOTAL is desirable.

"The variation reflecting the uncertainty in the data is that of

A
the Y observations around the regression line Yi" (7:86). The

Yi's are the predicted values of each observation using the regression

equation developed. The measure of variation in the data with the

regression model, denoted by ERROR on the SAS printouts, is the

sum of the squared deviations:

2

ERROR = E (Yi " Yi)  (5)

"If ERROR = 0, all observations fall on the fitted regression line.

The larger ERROR, the greater is the variation of the Y observations

around the regression line" (7:86). Therefore, a small ERROR value

is desirable.

The difference between the two sums of squares, C TOTAL-

ERROR, is another sum of squares denoted by MODEL on the SAS

p rintouts:

MODEL = Y -2 (6)

A

The deviations are - Y " Each deviation is simply
the difference between the fitted value on the regression
line and the mean of the observations. If the regression
line is horizontal so that j - Y = 0, then MODEL = 0.
Otherwise, MODEL is positive [7:861.

Therefore, as can be inferred from the above discussion, MODEL
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was one of the key statistics; and the larger MODEL in relation to

C TOTAL, the better the regression model. "MODEL may be con-

sidered a measure of the variability of the Yi's associated with the

regression line. The larger MODEL is in relation to C TOTAL, the

greater is the effect of the regression relation in accounting for the

total variation in the Yi observations" (7:86).

In summary, C TOTAL = MODEL + ERROR. The total devia-

tion (Yi-Y) equals the deviation of the fitted regression value around

the mean (Yi-Y) plus the deviation around the regression line (Yi=Y).

The next section of the ANOVA table is the degrees of freedom

associated with each sum of square. The SAS printout lists each

degree of freedom for each of the respective sum of squares.

The last section of the ANOVA table lists the mean squares.

The mean square is simply the sum of square component divided by

its respective degree of freedom.

*i Next, the other important SAS statistics used in the research

are described.

The R2 Value

The most common statistic is the R2 value. This is one

measure of the degree of linear association between Y (=LOC) and

the independent variables used in each data base.

The coefficient of multiple determination, denoted by
R2 (R-SQUARE on the SAS printouts), is defined as
follows:
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RZ = MODEL/C TOTAL = 1 - ERROR/C TOTAL (7)

It measures the proportionate reduction of total variation
in Y associated with the use of the set of X variables
X, .• , Xp~. We have

0 R2 !S 1 (8)

R2 assumes the value 0 when all parameter estimates
equal 0. R2 takes on the value of 1 when all observa-
tions fall directly on the fitted response surface, i.e.,
when Yi = Yi for all i [7:241].

However, two important points should be kept in mind about the R2

value.

First, a large R2 does not necessarily imply that the
fitted model is a useful one. For instance, observations
may have been taken only at a few leyels of the inde-
pendent variables. Despite a high R , the fitted model
may not be useful because some of the predictions may
require extrapolations outside the region of observations.
Also, even if R2 is high, the standard error of the esti-
mate may still be too large for inferences to be useful
in a case where high precision is required.

Second, adding more independent variables to the model
can only increase R2 and never reduce it, because
ERROR can never become larger with more independent
variables and C TOTAL is always the same for a given
set of responses. Since R' often can be made large by
including a large number of independent variables, it
is sometimes suggested that a modified measure be
used which recognizes the number of independent vari-
ables in the model. This adjusted coefficient of multi-
ple determination, denoted by ADJ R-SQ on the SAS
printouts, is defined:

R2 = 1- (n-I/n-p)*(ERROR/C TOTAL) (9)

[7:241].
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The F Statistic

One of the most important statistics given by a regression

program is the F statistic. The F statistic is the test statistic for

the analysis of variance approach. (It is denoted as F VALUE on the

SAS printouts.) The F statistic tests whether there is a regression

relation between the dependent variable Y and the set of X variables.

In other words, to choose the null hypothesis, H0 , that all the regres-

sion parameters equal zero and that there is no regression relation;

or the alternative hypothesis, Ha, that not all the regression para-

meters equal zero and that there is a regression relation. (See Table

XXV, Equation (10).

The Standard Error

The standard error of the estimate (ROOT MSE on the SAS

printouts) is also a very important statistic.

The standard error of the estimate is a measure of
the reliability of the regression prediction. It is a
measure of dispersion of observed values away from
the regression line. Therefore, when a prediction
is made, the standard error of the estimate may be
used to estimate the confidence interval around the
predicted value [3:253].

The other standard error statistics are those for the parameter

estimates of the regression model. These standard error terms are

used to measure the confidence limits for the true population para-

meters of the regression model.
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TABLE XXV

Regression Test Statistics

F test:

Fcalc :" MS MODEL / MS ERROR (10)

Decision rule to control Type I error at a:

ifFcalc 9 Ftable (1 - ;P- 1, n -p), conclude H

ifFcalc > Ftable (1-a p 1, n -p), conclude H a

whe re:

*p number of parameters in regression model
n =number of observations

Partial F test:

SS ERROR(R) - SS ERROR(F)

Partial Fcc= DF(F) - DF(F) (1
c alcSS ERROR(F)

DF (F)

whe re:

SS ERROR(R) =sum of squares error reduced model
SS ERROR(F) =sum of squares error full model
DF(R) = degrees of freedom reduced model
DF(F) = degrees of freedom full model
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TABLE XXV

Regression Test Statistics
(continued)

Decision rule for partial F test:

If pa'tial Fcalc -F table (1 a; DF(R) DF(F),DF(F)),

conclude H o

If partial Fcalc > Ftable (1 - ; DF(R) - DF(F),DF(F)),

conclude Ha

t test (level of significance at a):
,

If Itcalc ;6 t (I - a./Z; m - 2), conclude HO: : 0

If itcalc > t (I - m./2; m - 2), conclude Ha: # 0
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Multic ollinearity

Unfortunately, as in many nonexperimental situations, the

independent variables could be correlated among themselves and with

other variables that are related to the independent variable LOC, but

were not included in the models because they were unknown. This

correlation among the independent variables, or multicollinearity,

causes problems and has to be considered. If multicollinearity does

not exist in models developed, then

. . . if X 1 and X 2 are uncorrelated, adding X 2 to the
regression model does not change the regression
coefficient for Xl; correspondingly, adding XI to the
regression model does not change the regression
coefficient for X z [7:274].

When multicollinearity does exist, the following four main

problems could arise:

First, when independent variables are correlated, the
regression coefficient of any independent variable depends
on which other independent variables are included in the
model and which ones are left out. Thus, a regression
coefficient does not reflect any inherent effect of the
particular independent variable on the dependent vari-

*1~. able but only a marginal or partial effect, given what-
ever other correlated independent variables are included
in the model.

Second, when independent variables are correlated,
there is no unique sum of squares which can be
ascribed to an independent variable as reflecting
its effect in reducing the total variation in Y. The
reduction in the total variation ascribed to an independent
variable must be viewed in the context of the other
independent variables included in the model, whenever
the independent variables are correlated.

.,,
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Third, the estimated regression coefficients individually
may not be statistically significant even though a definite
statistical relation exists between the dependent variable
and the set of independent variables.

Last and most important is the common interpretation
of regression coefficients as measuring the change in
the expected value of the dependent variable when the
corresponding independent variable is increased by
one unit while all other independent variables are held
constant is not fully applicable when multicollinearity
exists [7:277,383,385].

Multicollinearity, unfortunately, also causes difficulties in

statistical tests of the regression coefficients.

A not infrequent abuse in the analysis of multiple
regression models is to examine the t statistic for
each regression coefficient in turn to decide whether
or not all the population parameters, Ok for k = 1,

, . . ., p-l, equal zero .[7:278].

For this reason the "partial F test" is used to test whether or not the

individual Ok'S were zero instead of the t test when multicollinearity

exists for the multivariable case. (See Table XXV, Equation (11).) An

important point of the partial F test is that when the numerator

(degrees of freedom) equals one, then the partial F test is equal to

the square of the t test statistic.

However, in cases of simple regression models (one independent

variable), the two-sided t test was used. (See Table XXV.) (tcalc is

identified under T for HO on the SAS printouts.)

Despite all the negative aspects of multicollinearity, there is

one bright spot.
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The fact that some or all independent variables are
correlated among themselves does not, in general,
inhibit the ability to obtain a good fit nor does it tend
to affect inferences about mean responses or predic-
tions of new observations, provided these inferences
are made within the region of observations [7:384].

The SAS program also gives multicollinearity statistics to help

determine if one of the regressors in the model is nearly a linear

combination of other regressors in the model. The first of these

statistics are the variance inflation factors (VIFs).

These factors measure how much the variances of
the estimated regression coefficients are inflated as
compared to when the independent variables are not
linearly related. . . . A maximum VIF in excess
of 10 is often taken as an indication that multicollinear-
ity may be unduly influencing the least squares estimates.
* * . A limitation of variance inflation factors for
detecting multicollinearities is that they cannot
distinguish between several simultaneous multi-
collinearities [7:391-393].

A second statistic to measure multicollinearity is the tolerance.

The tolerance value is simple 1/VIF for each regressor in the model.

The tolerance values will fall between:

0 9 TOLERANCE - 1

A tolerance factor close to one implies independence. A rule of thumb

states that if the tolerance factor is less than . 1 then multicollinearity

probably exists. However, as with the VIFs, the tolerance values

will measure the multicollinearity among the independent variables,

but cannot determine which variables are being affected.
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Outlie rs

A second important condition that must be considered for each

data base is the identification of outlying observations.

Outlying observations may involve large residuals and
often have dramatic effects on the fitted least squares
regression function. An observation may be outlying
or extreme with respect to its Y value, its X value(s),
or both. In the scatter plot in Figure 7, observation 1
is outlying with respect to its Y value. Note that this
point falls far outside the scatter, although its X value
is near the middle of the range of the observations on
the independent variable. Observations 2 and 3 are
outlying with respect to their X values since they
have much larger X values than those for the other
observations; observation 3 is also outlying with
respect to its Y value.

Not all outlying observations have strong influence onthe fitted regression function. Observation 1 may not

be too influential because there are a number of other
observations that have similar X values, which will
keep the fitted regression function from being displaced
too far by the outlying observation. Likewise, observa-
tion 2 may not be too influential because its Y value is
consistent with the regression relation displayed by the
nonextreme observations. Observation 3, on the other
hand, is likely to be very influential in affecting the fit
of the regression function because it is outlying with
regard to its X value, and its Y value is not consistent
with the regression relation for the other observations
[7:400-401].

To determine whether an X value is an outlier the leverage

value (h) is computed.

It indicates whether or not the X values for the ith

observation are outlying, because it can be shown that
h is a measure of the distance between the X values
for the ith observation and the means of the X values
of all n observations. Thus, a large leverage value
h indicates that the ith observation is distant from the
center of the X observations [7:402].

100

-.



y

.•.

.4- 3

x
Figure 7. Outlying Observations
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The rule of thumb states: "Leverage values, h, greater than or equal

to two times the number of parameters, p, divided by the number of

observations, n, (h 3 Zp/n) indicate outlying observations with regard

to the X values" (7:403).

To determine whether a Y value is an outlier the studentized

deleted residual is computed.

To identify outlying Y observations, examine the
studentized deleted residuals for large absolute values
and use the appropriate t distribution (t 1 - a, n - 1 -
p) to ascertain how far in the tails such outlying values
fall [7:406].

Any studentized deleted residual (RRESID on the SAS printouts)

greater than the appropriate t distribution value is considered an

outlier with respect to Y.

Cook's D. After identifying outlying observations with respect

to their X and/or Y values, the next step is to determine if they were

influential in affecting the fit of the regression function. If the out-

liers are influential and not corrected, then the fitted regression

function will be distorted. An overall measure of the impact of the

ith observation on the estimated regression coefficients is Cook's

distance measure (COOK'S D on the SAS printouts).

Cook's distance measure D i may be viewed as
reflecting in the aggregate the differences between
the fitted values for each observation when all n
observations are used in the data base and the
fitted values when the ith observation is deleted
[7:409].
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To determine if the outlier is influential use the following rule:

While Cook's D does not follow the F distribution, it
has been found useful to relate the value Di to the
corresponding F distribution according to F(p,n-p)
and ascertain the percentile value. If the percenti,_
value is less than about 10 or 20 percent, the ith
observation has little apparent influence on the fitted
regression function. If, on the other hand, the per-
centile value is near 50 percent or more, the distance
should be considered large, implying that the ith
observation has a substantial influence on the fit of the
regression function [7:408].

Model Specification

The last major area of concern with the regression models

developed is the model specification; i.e., is the linear regression

model appropriate for the data being analyzed?

A plot of the residuals, ei's (ei = Yi - Yi), against
the independent variables is not only helpful to study
whether a linear regression function is appropriate
but also to examine whether the variance of the error
terms is constant [7:113].

If the model is correctly specified, the residual plots should show a

random pattern.

The major implication of having a correctly specified regres-

sion model is that it will correctly show how the dependent variable,

(LOC), changes in response to a one unit change in the independent

variables (the other independent variables remaining constant and in

the absence of multicollinearity among the independent variables).

In other words, what are the correct signs (plus or minus) for each

of the independent variables? Does the model derived predict the

103



correct signs for each of the independent variables that the a priori

suggested?

The conditi-'n of constant or equal error variances over all

observations is called homoscedasticity. This is in contrast to non-

constant variance or heteroscedasticity. Having homoscedasticity is

very important because the estimators of the population regression

coefficients (00,01,0Z,. . .) obtained by ordinary least squares pro-

cedures are unbiased and consistent and are minimum variance

unbiased estimators (7:170). With heteroscedasticity the estimators

are still unbiased and consistent, but they are no longer minimum

variance unbiased estimators (7:170). "Heteroscedasticity is inherent

when the response in regression analysis follows a distribution in

which the variance is functionally related to the mean" (7:170).
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Appendix B: Thesis Data Bases

This appendix contains the six data bases used in this thesis.

I. Ballistic Missile Office

OBS LOC ENV LANG INTF INPT OUTPT EXP DM

1 43000 1 3 14 10 37 24 36

2 8875 2 3 10 6 10 8 30

3 32000 1 3 21 -- -- 54 30

4 112000 1 5 9 42 44 1 26

5 6400 1 5 7 24 25 1 26

6 13010 2 5 16 31 28 8 31

7 16000 1 4.5 18 139 131 16 29
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II. Electronic Systems Division

OBS LOC ENV DHRS LANG REL COMPX EXP OSPEC

1 26200 1 44868 4 5 5 1.4 2

2 15987 2 9433 1.5 4 4 22.4 1

3 56021 1 28320 1.8 5 4 25.6 2

4 21296 1 36640 7 4 4 13 2

5 63944 1 78020 2.1 4 5 50.4 3

6 47525 1 11000 3 4 5 54 1

7 9000 1 8976 1 4 5 12 1

8 15000 2 185328 1.4 5 5 64.8 2

9 15100 2 64247 1.4 5 5 64.8 2

10 12000 2 27456 1.4 5 5 64.8 2

11 14900 2 14664 1.2 5 6 64.8 2

12 18300 1 48184 3 5 5 50.4 2

13 10800 1 30704 3 5 5 50.4 2

14 10700 1 134824 3 5 5 50.4 2

15 16700 1 205504 3 5 4 50.4 2,

16 10500 1 25384 3 5 4 50.4 2

17 6539 1 16568 9 5 5 50.4 2

18 47165 1 84968 9 5 5 50.4 2

19 14200 1 43320 3 5 5 50.4 2

20 26033 1 40280 3 3 3 50.4 2
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II. Electronic Systems Division (Continued)

OBS LOC ENV DHRS LANG REL COMPX EXP QSPEC

21 24260 1 35112 10 3 3 50.4 2

22 628 1 304 1 3 4 50.4 2

23 29954 1 43320 3 3 4 50.4 2

24 9700 1 110504 3 5 3 50.4 2

25 5600 1 80104 3 5 3 50.4 2

26 32100 1 145920 3 5 5 50.4 2
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III. Armament Division- -Ground

OBS LOC DM LANG QSPEC REL FUNC COMPX

1 80000 48 1.3 2 3 2 5

2 25000 48 1.3 2 3 2 3

3 10000 20 1.2 2 5 2 3

4 4000 22 1.2 2 4 2 3

5 3000 24 1 1 2 2 2

6 1400 36 8 3 4 3 4

7 15900 36 1 2 3 3 4

8 1200 36 1 3 3 3 3

9 25000 -- 1.3 2 3 2 3

10 40000 -- 1 2 3 2 5

11 5800 -- 3 2 3 2 4

12 25000 -- 8 2 4 z 4
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IV. Armament Division--Airborne

OBS LOC DM LANG QSPEC REL FUNC COMPX

1 3000 24 2.05 3 4 1 5

2 2100 18 3 2 1 1 1

3 2000 42 3 2 3 3 2

4 16000 36 3 2 4 1 4

5 30000 24 1.3 2 5 1 4

6 60000 79 3 2 5 1 6

7 1300 22 1.2 2 3 2 3

* 8 16000 24 1 2 5 1 5
4"..3

9 2700 22 1 2 4 2 3

10 10000 -- 3 2 3 2 1

11 9000 -- 6.8 2 5 2 4

12 17000 1 2 4 1 4

13 29000 - - 1 2 4 1 4
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V. Language--Assembly

OBS LOC QSPEC REL ENV COMPX

1 2100 2 1 2 2

2 2000 2 3 z 2

3 16000 2 4 2 4

4 5800 2 3 1 4

5 18300 2 5 1 5

6 10800 2 5 1 5

7 10700 2 5 1 5

8 16700 2 5 1 4

9 10500 2 5 1 4

10 14200 2 5 1 5

11 26033 2 3 1 3

12 29954 2 3 1 4

13 9700 2 5 1 3

14 5600 2 5 1 3

15 32100 2 5 1 5

16 7200 - - 2 3

17 4056 - - 1 4

18 2311 - - 1 4

19 1461 - - 1 4

20 2158 - - 1 4
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I V. Language- -Ass embly (Continued)

OBS LOC QSPEC REL ENV COMPX

21 1454 - - 1 3

22 7887 - - 1 3

23 6231 - - 1 3

24 2241 - - 1 3

25 1058 - - 1 3

126 19768 - - 1 3

27 4008 - - 1 3

* .28 9995 - - 1 3

29 5674 -- 1 3

30 5841 -- 1 3
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VI. Language- -Fortran

OBS LOC QSPEC REL ENV COMPX

1 30000 2 5 2 4

2 25000 2 3 1 3

3 10000 2 5 1 3

4 10000 2 3 2 4

5 1300 2 3 2 3

6 4000 2 4 1 3

7 25000 2 3 1 3

8 40000 2 3 1 5

9 6000 2 3 1 3

10 3000 1 2 1 2

11 15900 2 3 1 4

'112 1200 3 3 1 3

13 2700 2 4 2 3

14 15987 1 4 2 4

15 56021 2 5 1 4

16 9000 1 4 1 5

17 15000 2 5 2 5

18 15100 2 5 2 5

19 12000 2 5 2 5

20 14900 2 5 2 6
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VI. Language- -Fortran (Continued)

OBS LOG QSPEC REIL ENV COMPX

21 4800 2 3 2 3

22 2000 - - 1 4

23 1550 - - 1 4

24 723 - - 1 3

25 669 - - 1 3

26 1096 - - 1 2

27 753 - - 1 2

28 886 - - 1 2

29 1298 - - 1 2

30 578 - - 1 2

31 1079 - - 1 2

32 1043 - - 1 2

33 953 - - 1 2

34 3101 - - 1 2

35 4847 - - 1 2

36 3877 - -1 2

37 1221 - -1 2

38 1381 - -1 2

39 3163 - -1 2

40 1985 - -1 2
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VI. Language- -Fortran (Continued)

OBS LOC QSPEC RLEL ENV COMPX

41 13979 - - 1 3

42 2798 - - 1 3

43 2644 - - 1 3

44 16111 - - 1 3

45 31748 - - 1 3

46 20287 - - 1 3

47 3679 - - 1 3

48 4708 - - 1 3

49 4052 - - 13

50 5426 - - 1 3

51 4729 - - 1 3

52 2582 - - 1 3

53 2442 - - 1 3

54 9025 - - 1 3
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